Table 1_Integrating single-cell RNA-seq, bulk RNA-seq and network pharmacology reveals protective effect of salidroside in peritoneal dialysis-associated peritoneal fibrosis.docx

<p>Salidroside (2- (4-Hydroxyphenyl) ethyl β-D-glucopyranoside, SAL) is a bioactive compound present in Rhodiola rosea L., exhibiting diverse pharmacological properties such as anti-inflammatory and anti-fibrotic effects. Despite its known benefits, the therapeutic potential of SAL in peritone...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Shuting Li (6552) (author)
مؤلفون آخرون: Yue Ji (1543645) (author), Silin Zhu (15265631) (author), Mi Liu (2621275) (author), Dan Luo (192943) (author), Qimei Luo (4732002) (author), Min Mo (62619) (author), Haibo Long (541499) (author), Fenfen Peng (401037) (author), Zhanjun Jia (311762) (author), Xianrui Dou (8333715) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:<p>Salidroside (2- (4-Hydroxyphenyl) ethyl β-D-glucopyranoside, SAL) is a bioactive compound present in Rhodiola rosea L., exhibiting diverse pharmacological properties such as anti-inflammatory and anti-fibrotic effects. Despite its known benefits, the therapeutic potential of SAL in peritoneal dialysis (PD) -induced peritoneal fibrosis remains unexplored. This study aims to investigate the protective effects of SAL in PD-related peritoneal fibrosis and its underlying mechanisms through the integration of single-cell RNA-seq, bulk RNA-seq, and network pharmacology analyses. A total of 249 disease targets were identified through single-cell RNA-seq and bulk RNA-seq analyses. Functional enrichment analysis highlighted the involvement of extracellular matrix organization, neutrophil degranulation, and the vitamin D receptor (VDR) pathway in peritoneal fibrosis. By intersecting 148 drug targets with the 249 disease targets, four therapeutic targets for SAL treatment against peritoneal fibrosis were pinpointed: cathepsin S, VDR, plasminogen activator urokinase, and galectin 3. In a murine model of peritoneal fibrosis induced by intraperitoneal injection of 4.25% PD fluid, SAL treatment significantly mitigated peritoneal fibrosis, as evidenced by reduced collagen deposition, decreased protein expression of α-smooth muscle actin and Collagen I, and a thinner peritoneum. In vitro experiments demonstrated that SAL treatment inhibited extracellular matrix deposition, potentially through upregulation of VDR expression. In conclusion, SAL may target VDR domains as a therapeutic agent for PD-related peritoneal fibrosis. These findings comprehensively identify potential therapeutic targets for SAL in combating peritoneal fibrosis, providing a theoretical basis for the clinical application of SAL in the treatment of peritoneal fibrosis.</p>