Network properties influence their susceptibility to gene perturbations.

<p>Counts of genes that are hub knockouts <b>(left)</b> and hub target genes <b>(right)</b> in each synthetic GRN, as a function of network generating parameters. Each panel shows all 1,920 GRNs as individual points, stratified by parameter values. Each distribution is...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Matthew Aguirre (9558032) (author)
مؤلفون آخرون: Jeffrey P. Spence (15317543) (author), Guy Sella (230321) (author), Jonathan K. Pritchard (8027465) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852017061624020992
author Matthew Aguirre (9558032)
author2 Jeffrey P. Spence (15317543)
Guy Sella (230321)
Jonathan K. Pritchard (8027465)
author2_role author
author
author
author_facet Matthew Aguirre (9558032)
Jeffrey P. Spence (15317543)
Guy Sella (230321)
Jonathan K. Pritchard (8027465)
author_role author
dc.creator.none.fl_str_mv Matthew Aguirre (9558032)
Jeffrey P. Spence (15317543)
Guy Sella (230321)
Jonathan K. Pritchard (8027465)
dc.date.none.fl_str_mv 2025-09-02T18:03:17Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013387.g004
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Network_properties_influence_their_susceptibility_to_gene_perturbations_/30037035
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Genetics
Molecular Biology
Developmental Biology
Infectious Diseases
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
world network theory
consider future avenues
interpret gene coexpression
gene knockouts within
better understand properties
scale perturbation study
like hierarchical structure
unperturbed cells may
gene regulation
unperturbed states
scale efforts
key properties
systematically describe
remains challenging
recent genome
recapitulate features
perturbation data
new approach
molecular perturbations
modular organization
efficient manner
deeper analysis
dc.title.none.fl_str_mv Network properties influence their susceptibility to gene perturbations.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Counts of genes that are hub knockouts <b>(left)</b> and hub target genes <b>(right)</b> in each synthetic GRN, as a function of network generating parameters. Each panel shows all 1,920 GRNs as individual points, stratified by parameter values. Each distribution is annotated with its mean over GRNs (diamond points).</p>
eu_rights_str_mv openAccess
id Manara_ccc967a231c94f4cd5591c8affc3e043
identifier_str_mv 10.1371/journal.pcbi.1013387.g004
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30037035
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Network properties influence their susceptibility to gene perturbations.Matthew Aguirre (9558032)Jeffrey P. Spence (15317543)Guy Sella (230321)Jonathan K. Pritchard (8027465)GeneticsMolecular BiologyDevelopmental BiologyInfectious DiseasesComputational BiologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedworld network theoryconsider future avenuesinterpret gene coexpressiongene knockouts withinbetter understand propertiesscale perturbation studylike hierarchical structureunperturbed cells maygene regulationunperturbed statesscale effortskey propertiessystematically describeremains challengingrecent genomerecapitulate featuresperturbation datanew approachmolecular perturbationsmodular organizationefficient mannerdeeper analysis<p>Counts of genes that are hub knockouts <b>(left)</b> and hub target genes <b>(right)</b> in each synthetic GRN, as a function of network generating parameters. Each panel shows all 1,920 GRNs as individual points, stratified by parameter values. Each distribution is annotated with its mean over GRNs (diamond points).</p>2025-09-02T18:03:17ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pcbi.1013387.g004https://figshare.com/articles/figure/Network_properties_influence_their_susceptibility_to_gene_perturbations_/30037035CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/300370352025-09-02T18:03:17Z
spellingShingle Network properties influence their susceptibility to gene perturbations.
Matthew Aguirre (9558032)
Genetics
Molecular Biology
Developmental Biology
Infectious Diseases
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
world network theory
consider future avenues
interpret gene coexpression
gene knockouts within
better understand properties
scale perturbation study
like hierarchical structure
unperturbed cells may
gene regulation
unperturbed states
scale efforts
key properties
systematically describe
remains challenging
recent genome
recapitulate features
perturbation data
new approach
molecular perturbations
modular organization
efficient manner
deeper analysis
status_str publishedVersion
title Network properties influence their susceptibility to gene perturbations.
title_full Network properties influence their susceptibility to gene perturbations.
title_fullStr Network properties influence their susceptibility to gene perturbations.
title_full_unstemmed Network properties influence their susceptibility to gene perturbations.
title_short Network properties influence their susceptibility to gene perturbations.
title_sort Network properties influence their susceptibility to gene perturbations.
topic Genetics
Molecular Biology
Developmental Biology
Infectious Diseases
Computational Biology
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
world network theory
consider future avenues
interpret gene coexpression
gene knockouts within
better understand properties
scale perturbation study
like hierarchical structure
unperturbed cells may
gene regulation
unperturbed states
scale efforts
key properties
systematically describe
remains challenging
recent genome
recapitulate features
perturbation data
new approach
molecular perturbations
modular organization
efficient manner
deeper analysis