Network properties influence their susceptibility to gene perturbations.
<p>Counts of genes that are hub knockouts <b>(left)</b> and hub target genes <b>(right)</b> in each synthetic GRN, as a function of network generating parameters. Each panel shows all 1,920 GRNs as individual points, stratified by parameter values. Each distribution is...
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| _version_ | 1852017061624020992 |
|---|---|
| author | Matthew Aguirre (9558032) |
| author2 | Jeffrey P. Spence (15317543) Guy Sella (230321) Jonathan K. Pritchard (8027465) |
| author2_role | author author author |
| author_facet | Matthew Aguirre (9558032) Jeffrey P. Spence (15317543) Guy Sella (230321) Jonathan K. Pritchard (8027465) |
| author_role | author |
| dc.creator.none.fl_str_mv | Matthew Aguirre (9558032) Jeffrey P. Spence (15317543) Guy Sella (230321) Jonathan K. Pritchard (8027465) |
| dc.date.none.fl_str_mv | 2025-09-02T18:03:17Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pcbi.1013387.g004 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/Network_properties_influence_their_susceptibility_to_gene_perturbations_/30037035 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Genetics Molecular Biology Developmental Biology Infectious Diseases Computational Biology Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified world network theory consider future avenues interpret gene coexpression gene knockouts within better understand properties scale perturbation study like hierarchical structure unperturbed cells may gene regulation unperturbed states scale efforts key properties systematically describe remains challenging recent genome recapitulate features perturbation data new approach molecular perturbations modular organization efficient manner deeper analysis |
| dc.title.none.fl_str_mv | Network properties influence their susceptibility to gene perturbations. |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p>Counts of genes that are hub knockouts <b>(left)</b> and hub target genes <b>(right)</b> in each synthetic GRN, as a function of network generating parameters. Each panel shows all 1,920 GRNs as individual points, stratified by parameter values. Each distribution is annotated with its mean over GRNs (diamond points).</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_ccc967a231c94f4cd5591c8affc3e043 |
| identifier_str_mv | 10.1371/journal.pcbi.1013387.g004 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/30037035 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Network properties influence their susceptibility to gene perturbations.Matthew Aguirre (9558032)Jeffrey P. Spence (15317543)Guy Sella (230321)Jonathan K. Pritchard (8027465)GeneticsMolecular BiologyDevelopmental BiologyInfectious DiseasesComputational BiologyBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedworld network theoryconsider future avenuesinterpret gene coexpressiongene knockouts withinbetter understand propertiesscale perturbation studylike hierarchical structureunperturbed cells maygene regulationunperturbed statesscale effortskey propertiessystematically describeremains challengingrecent genomerecapitulate featuresperturbation datanew approachmolecular perturbationsmodular organizationefficient mannerdeeper analysis<p>Counts of genes that are hub knockouts <b>(left)</b> and hub target genes <b>(right)</b> in each synthetic GRN, as a function of network generating parameters. Each panel shows all 1,920 GRNs as individual points, stratified by parameter values. Each distribution is annotated with its mean over GRNs (diamond points).</p>2025-09-02T18:03:17ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pcbi.1013387.g004https://figshare.com/articles/figure/Network_properties_influence_their_susceptibility_to_gene_perturbations_/30037035CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/300370352025-09-02T18:03:17Z |
| spellingShingle | Network properties influence their susceptibility to gene perturbations. Matthew Aguirre (9558032) Genetics Molecular Biology Developmental Biology Infectious Diseases Computational Biology Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified world network theory consider future avenues interpret gene coexpression gene knockouts within better understand properties scale perturbation study like hierarchical structure unperturbed cells may gene regulation unperturbed states scale efforts key properties systematically describe remains challenging recent genome recapitulate features perturbation data new approach molecular perturbations modular organization efficient manner deeper analysis |
| status_str | publishedVersion |
| title | Network properties influence their susceptibility to gene perturbations. |
| title_full | Network properties influence their susceptibility to gene perturbations. |
| title_fullStr | Network properties influence their susceptibility to gene perturbations. |
| title_full_unstemmed | Network properties influence their susceptibility to gene perturbations. |
| title_short | Network properties influence their susceptibility to gene perturbations. |
| title_sort | Network properties influence their susceptibility to gene perturbations. |
| topic | Genetics Molecular Biology Developmental Biology Infectious Diseases Computational Biology Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified world network theory consider future avenues interpret gene coexpression gene knockouts within better understand properties scale perturbation study like hierarchical structure unperturbed cells may gene regulation unperturbed states scale efforts key properties systematically describe remains challenging recent genome recapitulate features perturbation data new approach molecular perturbations modular organization efficient manner deeper analysis |