Comparison with recent methods on the WUSTL-EHMS-2020 dataset.
<p>Comparison with recent methods on the WUSTL-EHMS-2020 dataset.</p>
Saved in:
| Main Author: | |
|---|---|
| Other Authors: | , |
| Published: |
2025
|
| Subjects: | |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| _version_ | 1852018798067974144 |
|---|---|
| author | Ahmed Muqdad Alnasrallah (21647492) |
| author2 | Maheyzah Md Siraj (3366005) Hanan Ali Alrikabi (21647495) |
| author2_role | author author |
| author_facet | Ahmed Muqdad Alnasrallah (21647492) Maheyzah Md Siraj (3366005) Hanan Ali Alrikabi (21647495) |
| author_role | author |
| dc.creator.none.fl_str_mv | Ahmed Muqdad Alnasrallah (21647492) Maheyzah Md Siraj (3366005) Hanan Ali Alrikabi (21647495) |
| dc.date.none.fl_str_mv | 2025-07-02T17:33:25Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pone.0327137.t009 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/dataset/Comparison_with_recent_methods_on_the_WUSTL-EHMS-2020_dataset_/29461640 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Space Science Biological Sciences not elsewhere classified Information Systems not elsewhere classified stable statistical improvement significantly impacted society recursive feature elimination prevent future intrusions reducing training time improving healthcare services enhance detection performance deep neural network enhances ids efficiency statistically significant p deep learning methods advanced features selection deep learning model performance improve healthcare deep autoencoder appropriate time robust ids ids model enhancing ids union subsets top 50 study proposes study indicates specialized variant growing interconnectivity f1 score especially due classifies traffic cicids2017 dataset 2020 dataset |
| dc.title.none.fl_str_mv | Comparison with recent methods on the WUSTL-EHMS-2020 dataset. |
| dc.type.none.fl_str_mv | Dataset info:eu-repo/semantics/publishedVersion dataset |
| description | <p>Comparison with recent methods on the WUSTL-EHMS-2020 dataset.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_d31e65b68e96be6e57cc299cd581ea55 |
| identifier_str_mv | 10.1371/journal.pone.0327137.t009 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/29461640 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Comparison with recent methods on the WUSTL-EHMS-2020 dataset.Ahmed Muqdad Alnasrallah (21647492)Maheyzah Md Siraj (3366005)Hanan Ali Alrikabi (21647495)Space ScienceBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedstable statistical improvementsignificantly impacted societyrecursive feature eliminationprevent future intrusionsreducing training timeimproving healthcare servicesenhance detection performancedeep neural networkenhances ids efficiencystatistically significant pdeep learning methodsadvanced features selectiondeep learningmodel performanceimprove healthcaredeep autoencoderappropriate timerobust idsids modelenhancing idsunion subsetstop 50study proposesstudy indicatesspecialized variantgrowing interconnectivityf1 scoreespecially dueclassifies trafficcicids2017 dataset2020 dataset<p>Comparison with recent methods on the WUSTL-EHMS-2020 dataset.</p>2025-07-02T17:33:25ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0327137.t009https://figshare.com/articles/dataset/Comparison_with_recent_methods_on_the_WUSTL-EHMS-2020_dataset_/29461640CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/294616402025-07-02T17:33:25Z |
| spellingShingle | Comparison with recent methods on the WUSTL-EHMS-2020 dataset. Ahmed Muqdad Alnasrallah (21647492) Space Science Biological Sciences not elsewhere classified Information Systems not elsewhere classified stable statistical improvement significantly impacted society recursive feature elimination prevent future intrusions reducing training time improving healthcare services enhance detection performance deep neural network enhances ids efficiency statistically significant p deep learning methods advanced features selection deep learning model performance improve healthcare deep autoencoder appropriate time robust ids ids model enhancing ids union subsets top 50 study proposes study indicates specialized variant growing interconnectivity f1 score especially due classifies traffic cicids2017 dataset 2020 dataset |
| status_str | publishedVersion |
| title | Comparison with recent methods on the WUSTL-EHMS-2020 dataset. |
| title_full | Comparison with recent methods on the WUSTL-EHMS-2020 dataset. |
| title_fullStr | Comparison with recent methods on the WUSTL-EHMS-2020 dataset. |
| title_full_unstemmed | Comparison with recent methods on the WUSTL-EHMS-2020 dataset. |
| title_short | Comparison with recent methods on the WUSTL-EHMS-2020 dataset. |
| title_sort | Comparison with recent methods on the WUSTL-EHMS-2020 dataset. |
| topic | Space Science Biological Sciences not elsewhere classified Information Systems not elsewhere classified stable statistical improvement significantly impacted society recursive feature elimination prevent future intrusions reducing training time improving healthcare services enhance detection performance deep neural network enhances ids efficiency statistically significant p deep learning methods advanced features selection deep learning model performance improve healthcare deep autoencoder appropriate time robust ids ids model enhancing ids union subsets top 50 study proposes study indicates specialized variant growing interconnectivity f1 score especially due classifies traffic cicids2017 dataset 2020 dataset |