Photoresponsive Organic CagesComputationally Inspired Discovery of Azobenzene-Derived Organic Cages
The incorporation of photoresponsive groups into porous materials is attractive as it offers potential advantages in controlling the pore size and selectivity to guest molecules. A combination of computational modeling and experiment resulted in the synthesis of two azobenzene-derived organic cages...
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , , , , , , , , , , |
| منشور في: |
2024
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| الملخص: | The incorporation of photoresponsive groups into porous materials is attractive as it offers potential advantages in controlling the pore size and selectivity to guest molecules. A combination of computational modeling and experiment resulted in the synthesis of two azobenzene-derived organic cages based on building blocks identified in a computational screen. Both cages incorporate three azobenzene moieties, and are therefore capable of 3-fold isomerization, using either ditopic or tetratopic aldehydes containing diazene functionality. The ditopic aldehyde forms a <b>Tri</b><sup><b>2</b></sup><b>Di</b><sup><b>3</b></sup> cage via a 6-fold imine condensation and the tritopic aldehyde forms a <b>Tet</b><sup><b>3</b></sup><b>Di</b><sup><b>6</b></sup> cage via a 12-fold imine condensation. The relative energies and corresponding intrinsic cavities of each isomeric state were computed, and the photoswitching behavior of both cages was studied by UV–Vis and <sup>1</sup>H NMR spectroscopy, including a detailed kinetic analysis of the thermal isomerization for each of the <i>EEZ</i>, <i>EZZ</i> and <i>ZZZ</i> metastable isomers of the <b>Tet</b><sup><b>3</b></sup><b>Di</b><sup><b>6</b></sup> cage. Both cages underwent photoisomerization, where a photostationary state of up to 77% of the <i>cis</i>-isomer and overall thermal half-life of 110 h was identified for the <b>Tet</b><sup><b>3</b></sup><b>Di</b><sup><b>6</b></sup> species. Overall, this work demonstrates the potential of computational modeling to inform the design of photoresponsive materials and highlights the contrasting effects on the photoswitching properties of the azobenzene moieties on incorporation into the different cage species. |
|---|