10.2肺鳞状细胞癌.zip

<p dir="ltr">We interrogated multi-omics data from The Cancer Genome Atlas (TCGA) and other public databases including genomic sequencing, gene expression, miRNA expression protein expression and metabolite profiles of lung cancer patients. In our study, different ML algorithms inclu...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Zhiwei Xv (19835028) (author)
منشور في: 2024
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852026007281729536
author Zhiwei Xv (19835028)
author_facet Zhiwei Xv (19835028)
author_role author
dc.creator.none.fl_str_mv Zhiwei Xv (19835028)
dc.date.none.fl_str_mv 2024-10-11T06:11:28Z
dc.identifier.none.fl_str_mv 10.6084/m9.figshare.27209688.v1
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/10_2_zip/27209688
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biological network analysis
machine learning antibiotic
dc.title.none.fl_str_mv 10.2肺鳞状细胞癌.zip
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p dir="ltr">We interrogated multi-omics data from The Cancer Genome Atlas (TCGA) and other public databases including genomic sequencing, gene expression, miRNA expression protein expression and metabolite profiles of lung cancer patients. In our study, different ML algorithms including random forest, support vector machines, neural networks and deep learning models were used to construct predictive models for diagnosing lung cancer disease, treatment response and prognosis.</p>
eu_rights_str_mv openAccess
id Manara_d8d3bcbd14fbb88decc256e990987972
identifier_str_mv 10.6084/m9.figshare.27209688.v1
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27209688
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling 10.2肺鳞状细胞癌.zipZhiwei Xv (19835028)Biological network analysismachine learning antibiotic<p dir="ltr">We interrogated multi-omics data from The Cancer Genome Atlas (TCGA) and other public databases including genomic sequencing, gene expression, miRNA expression protein expression and metabolite profiles of lung cancer patients. In our study, different ML algorithms including random forest, support vector machines, neural networks and deep learning models were used to construct predictive models for diagnosing lung cancer disease, treatment response and prognosis.</p>2024-10-11T06:11:28ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.6084/m9.figshare.27209688.v1https://figshare.com/articles/dataset/10_2_zip/27209688CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/272096882024-10-11T06:11:28Z
spellingShingle 10.2肺鳞状细胞癌.zip
Zhiwei Xv (19835028)
Biological network analysis
machine learning antibiotic
status_str publishedVersion
title 10.2肺鳞状细胞癌.zip
title_full 10.2肺鳞状细胞癌.zip
title_fullStr 10.2肺鳞状细胞癌.zip
title_full_unstemmed 10.2肺鳞状细胞癌.zip
title_short 10.2肺鳞状细胞癌.zip
title_sort 10.2肺鳞状细胞癌.zip
topic Biological network analysis
machine learning antibiotic