The training time of the BI-GRU model using three different datasets

<p>The training time of the BI-GRU model using three different datasets</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Hiam Alquran (17636906) (author)
مؤلفون آخرون: Yazan Al-Issa (18934001) (author), Mohammed Alsalatie (21087775) (author), Shefa Tawalbeh (21087778) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852021333203877888
author Hiam Alquran (17636906)
author2 Yazan Al-Issa (18934001)
Mohammed Alsalatie (21087775)
Shefa Tawalbeh (21087778)
author2_role author
author
author
author_facet Hiam Alquran (17636906)
Yazan Al-Issa (18934001)
Mohammed Alsalatie (21087775)
Shefa Tawalbeh (21087778)
author_role author
dc.creator.none.fl_str_mv Hiam Alquran (17636906)
Yazan Al-Issa (18934001)
Mohammed Alsalatie (21087775)
Shefa Tawalbeh (21087778)
dc.date.none.fl_str_mv 2025-04-14T20:08:44Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0320297.t007
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/The_training_time_of_the_BI-GRU_model_using_three_different_datasets/28791445
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Biotechnology
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
proposed approach achieved
mechanical vibrations occurring
including digital filtering
facilitate blood circulation
empirical mode decomposition
different cardiac structures
deep learning algorithms
cardiology challenge 2016
body &# 8217
lub sound ),
dub sound ),
segmenting phonocardiogram signals
circor digiscope phonocardiogram
circor digiscop dataset
deep learning models
pcg signal underwent
gru ), bidirectional
pcg signal
mithsdb ),
sound frequencies
pcg ).
mithsdb dataset
three well
term memory
systolic region
study compared
software tool
segmentation process
processing steps
paper represents
namely s1
massachusetts institute
known datasets
highest level
first investigation
directional long
diastolic region
aforementioned datasets
5 %.
dc.title.none.fl_str_mv The training time of the BI-GRU model using three different datasets
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>The training time of the BI-GRU model using three different datasets</p>
eu_rights_str_mv openAccess
id Manara_d9155bc6f8e2b4340ae85e3e96558be7
identifier_str_mv 10.1371/journal.pone.0320297.t007
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28791445
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The training time of the BI-GRU model using three different datasetsHiam Alquran (17636906)Yazan Al-Issa (18934001)Mohammed Alsalatie (21087775)Shefa Tawalbeh (21087778)Cell BiologyBiotechnologySpace ScienceBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedproposed approach achievedmechanical vibrations occurringincluding digital filteringfacilitate blood circulationempirical mode decompositiondifferent cardiac structuresdeep learning algorithmscardiology challenge 2016body &# 8217lub sound ),dub sound ),segmenting phonocardiogram signalscircor digiscope phonocardiogramcircor digiscop datasetdeep learning modelspcg signal underwentgru ), bidirectionalpcg signalmithsdb ),sound frequenciespcg ).mithsdb datasetthree wellterm memorysystolic regionstudy comparedsoftware toolsegmentation processprocessing stepspaper representsnamely s1massachusetts instituteknown datasetshighest levelfirst investigationdirectional longdiastolic regionaforementioned datasets5 %.<p>The training time of the BI-GRU model using three different datasets</p>2025-04-14T20:08:44ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0320297.t007https://figshare.com/articles/dataset/The_training_time_of_the_BI-GRU_model_using_three_different_datasets/28791445CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/287914452025-04-14T20:08:44Z
spellingShingle The training time of the BI-GRU model using three different datasets
Hiam Alquran (17636906)
Cell Biology
Biotechnology
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
proposed approach achieved
mechanical vibrations occurring
including digital filtering
facilitate blood circulation
empirical mode decomposition
different cardiac structures
deep learning algorithms
cardiology challenge 2016
body &# 8217
lub sound ),
dub sound ),
segmenting phonocardiogram signals
circor digiscope phonocardiogram
circor digiscop dataset
deep learning models
pcg signal underwent
gru ), bidirectional
pcg signal
mithsdb ),
sound frequencies
pcg ).
mithsdb dataset
three well
term memory
systolic region
study compared
software tool
segmentation process
processing steps
paper represents
namely s1
massachusetts institute
known datasets
highest level
first investigation
directional long
diastolic region
aforementioned datasets
5 %.
status_str publishedVersion
title The training time of the BI-GRU model using three different datasets
title_full The training time of the BI-GRU model using three different datasets
title_fullStr The training time of the BI-GRU model using three different datasets
title_full_unstemmed The training time of the BI-GRU model using three different datasets
title_short The training time of the BI-GRU model using three different datasets
title_sort The training time of the BI-GRU model using three different datasets
topic Cell Biology
Biotechnology
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
proposed approach achieved
mechanical vibrations occurring
including digital filtering
facilitate blood circulation
empirical mode decomposition
different cardiac structures
deep learning algorithms
cardiology challenge 2016
body &# 8217
lub sound ),
dub sound ),
segmenting phonocardiogram signals
circor digiscope phonocardiogram
circor digiscop dataset
deep learning models
pcg signal underwent
gru ), bidirectional
pcg signal
mithsdb ),
sound frequencies
pcg ).
mithsdb dataset
three well
term memory
systolic region
study compared
software tool
segmentation process
processing steps
paper represents
namely s1
massachusetts institute
known datasets
highest level
first investigation
directional long
diastolic region
aforementioned datasets
5 %.