OPTION-DQN algorithm flowchart.

<div><p>In response to the inefficiencies in offshore wind farm inspections caused by path redundancy and mission omissions, this study proposes a novel path planning method for Unmanned Aerial Vehicle (UAV) inspections, integrating multi-constraint optimization and intelligent schedulin...

Disgrifiad llawn

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Prif Awdur: Meiqing Xu (8502255) (author)
Awduron Eraill: Chao Deng (329151) (author), Xiangyu Hu (4326106) (author), Yuxin Lu (225932) (author), Wenyan Xue (22676549) (author), Bin Zhu (182882) (author)
Cyhoeddwyd: 2025
Pynciau:
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!
_version_ 1849927642401210368
author Meiqing Xu (8502255)
author2 Chao Deng (329151)
Xiangyu Hu (4326106)
Yuxin Lu (225932)
Wenyan Xue (22676549)
Bin Zhu (182882)
author2_role author
author
author
author
author
author_facet Meiqing Xu (8502255)
Chao Deng (329151)
Xiangyu Hu (4326106)
Yuxin Lu (225932)
Wenyan Xue (22676549)
Bin Zhu (182882)
author_role author
dc.creator.none.fl_str_mv Meiqing Xu (8502255)
Chao Deng (329151)
Xiangyu Hu (4326106)
Yuxin Lu (225932)
Wenyan Xue (22676549)
Bin Zhu (182882)
dc.date.none.fl_str_mv 2025-11-24T18:30:00Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0336935.g005
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/OPTION-DQN_algorithm_flowchart_/30697196
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Microbiology
Neuroscience
Evolutionary Biology
Inorganic Chemistry
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
unmanned aerial vehicle
faster simulation time
encompassing wind speed
dynamic obstacle avoidance
deep reinforcement learning
balance global navigation
dimensional constraint model
conventional heuristic methods
heuristic search
constraint optimization
xlink ">
study proposes
simulated annealing
path redundancy
path distance
mission omissions
means algorithm
local optimization
intelligent scheduling
improved k
comparative evaluations
dc.title.none.fl_str_mv OPTION-DQN algorithm flowchart.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <div><p>In response to the inefficiencies in offshore wind farm inspections caused by path redundancy and mission omissions, this study proposes a novel path planning method for Unmanned Aerial Vehicle (UAV) inspections, integrating multi-constraint optimization and intelligent scheduling. First, a four-dimensional constraint model is established, encompassing wind speed, charging, minimum UAV fleet size, and dynamic obstacle avoidance. Second, the OPTION-A*-DQN hybrid algorithm is developed by synergizing A* heuristic search with deep reinforcement learning (DRL) to balance global navigation and local optimization. An improved K-Means algorithm further enables efficient topological partitioning for multi-UAV collaboration. Comparative evaluations against original OPTION-DQN and conventional heuristic methods (Dijkstra and Simulated Annealing) demonstrate that the proposed method achieves three key improvements: (1) a 10% higher task completion rate, (2) a 14.9% reduction in path distance, and (3) a 20% faster simulation time. This work significantly advances intelligent path planning for offshore wind farm inspections.</p></div>
eu_rights_str_mv openAccess
id Manara_d99da165407580938c5c0967fd9b36f4
identifier_str_mv 10.1371/journal.pone.0336935.g005
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697196
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling OPTION-DQN algorithm flowchart.Meiqing Xu (8502255)Chao Deng (329151)Xiangyu Hu (4326106)Yuxin Lu (225932)Wenyan Xue (22676549)Bin Zhu (182882)MicrobiologyNeuroscienceEvolutionary BiologyInorganic ChemistryScience PolicySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedunmanned aerial vehiclefaster simulation timeencompassing wind speeddynamic obstacle avoidancedeep reinforcement learningbalance global navigationdimensional constraint modelconventional heuristic methodsheuristic searchconstraint optimizationxlink ">study proposessimulated annealingpath redundancypath distancemission omissionsmeans algorithmlocal optimizationintelligent schedulingimproved kcomparative evaluations<div><p>In response to the inefficiencies in offshore wind farm inspections caused by path redundancy and mission omissions, this study proposes a novel path planning method for Unmanned Aerial Vehicle (UAV) inspections, integrating multi-constraint optimization and intelligent scheduling. First, a four-dimensional constraint model is established, encompassing wind speed, charging, minimum UAV fleet size, and dynamic obstacle avoidance. Second, the OPTION-A*-DQN hybrid algorithm is developed by synergizing A* heuristic search with deep reinforcement learning (DRL) to balance global navigation and local optimization. An improved K-Means algorithm further enables efficient topological partitioning for multi-UAV collaboration. Comparative evaluations against original OPTION-DQN and conventional heuristic methods (Dijkstra and Simulated Annealing) demonstrate that the proposed method achieves three key improvements: (1) a 10% higher task completion rate, (2) a 14.9% reduction in path distance, and (3) a 20% faster simulation time. This work significantly advances intelligent path planning for offshore wind farm inspections.</p></div>2025-11-24T18:30:00ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0336935.g005https://figshare.com/articles/figure/OPTION-DQN_algorithm_flowchart_/30697196CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306971962025-11-24T18:30:00Z
spellingShingle OPTION-DQN algorithm flowchart.
Meiqing Xu (8502255)
Microbiology
Neuroscience
Evolutionary Biology
Inorganic Chemistry
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
unmanned aerial vehicle
faster simulation time
encompassing wind speed
dynamic obstacle avoidance
deep reinforcement learning
balance global navigation
dimensional constraint model
conventional heuristic methods
heuristic search
constraint optimization
xlink ">
study proposes
simulated annealing
path redundancy
path distance
mission omissions
means algorithm
local optimization
intelligent scheduling
improved k
comparative evaluations
status_str publishedVersion
title OPTION-DQN algorithm flowchart.
title_full OPTION-DQN algorithm flowchart.
title_fullStr OPTION-DQN algorithm flowchart.
title_full_unstemmed OPTION-DQN algorithm flowchart.
title_short OPTION-DQN algorithm flowchart.
title_sort OPTION-DQN algorithm flowchart.
topic Microbiology
Neuroscience
Evolutionary Biology
Inorganic Chemistry
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
unmanned aerial vehicle
faster simulation time
encompassing wind speed
dynamic obstacle avoidance
deep reinforcement learning
balance global navigation
dimensional constraint model
conventional heuristic methods
heuristic search
constraint optimization
xlink ">
study proposes
simulated annealing
path redundancy
path distance
mission omissions
means algorithm
local optimization
intelligent scheduling
improved k
comparative evaluations