Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival

<p>Knocking down SIRT3 caused ATF4 signaling inhibition but not HIF1a. <b>A,</b> Dendrograms from hierarchical clustering of RNA-seq data from three DLBCL cells lines transduced with lentiviruses containing control (scramble) or two SIRT3 shRNAs. <b>B,</b> Heatmap showi...

Descripció completa

Guardat en:
Dades bibliogràfiques
Autor principal: Meng Li (79487) (author)
Altres autors: Matthew R. Teater (15129060) (author), Jun Young Hong (6588914) (author), Noel R. Park (15129063) (author), Cihangir Duy (15112006) (author), Hao Shen (195461) (author), Ling Wang (56577) (author), Zhengming Chen (385056) (author), Leandro Cerchietti (15091552) (author), Shawn M. Davidson (14911596) (author), Hening Lin (1306563) (author), Ari M. Melnick (15110132) (author)
Publicat: 2025
Matèries:
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
_version_ 1849927640592416768
author Meng Li (79487)
author2 Matthew R. Teater (15129060)
Jun Young Hong (6588914)
Noel R. Park (15129063)
Cihangir Duy (15112006)
Hao Shen (195461)
Ling Wang (56577)
Zhengming Chen (385056)
Leandro Cerchietti (15091552)
Shawn M. Davidson (14911596)
Hening Lin (1306563)
Ari M. Melnick (15110132)
author2_role author
author
author
author
author
author
author
author
author
author
author
author_facet Meng Li (79487)
Matthew R. Teater (15129060)
Jun Young Hong (6588914)
Noel R. Park (15129063)
Cihangir Duy (15112006)
Hao Shen (195461)
Ling Wang (56577)
Zhengming Chen (385056)
Leandro Cerchietti (15091552)
Shawn M. Davidson (14911596)
Hening Lin (1306563)
Ari M. Melnick (15110132)
author_role author
dc.creator.none.fl_str_mv Meng Li (79487)
Matthew R. Teater (15129060)
Jun Young Hong (6588914)
Noel R. Park (15129063)
Cihangir Duy (15112006)
Hao Shen (195461)
Ling Wang (56577)
Zhengming Chen (385056)
Leandro Cerchietti (15091552)
Shawn M. Davidson (14911596)
Hening Lin (1306563)
Ari M. Melnick (15110132)
dc.date.none.fl_str_mv 2025-11-24T22:01:45Z
dc.identifier.none.fl_str_mv 10.1158/2643-3230.30698634
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Figure_1_from_Translational_Activation_of_ATF4_through_Mitochondrial_Anaplerotic_Metabolic_Pathways_Is_Required_for_DLBCL_Growth_and_Survival/30698634
dc.rights.none.fl_str_mv CC BY
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cancer
Molecular and Cellular Biology
Cellular Stress Responses
Gene Regulation
Posttranscriptional and translational control
Hematological Cancers
Lymphomas
Metabolism
dc.title.none.fl_str_mv Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Knocking down SIRT3 caused ATF4 signaling inhibition but not HIF1a. <b>A,</b> Dendrograms from hierarchical clustering of RNA-seq data from three DLBCL cells lines transduced with lentiviruses containing control (scramble) or two SIRT3 shRNAs. <b>B,</b> Heatmap showing differential expression in SIRT3 knockdown cells versus control (FC > 1.5, <i>q</i> < 0.05). <b>C,</b> Heatmap showing enrichment of SIRT3 knockdown signatures within key pathways. CHIP, chromatin immunoprecipitation; CHOP, C/EBP homologous protein; dn, down; KEGG, Kyoto Encyclopedia of Genes and Genomes; MEF, mouse embryonic fibroblast; TM, tunicamycin. <b>D,</b> GSEA (<a href="#bib51 bib52" target="_blank">51, 52</a>) showing the enrichment of ATF4 target genes in SIRT3-downregulated genes in Karpas 422, OCI-LY1, and HBL1 cells with SIRT3 sh1 versus control scramble shRNAs. The rank lists were from RNA-seq analysis from <b>B</b>. ATF4 target genes were summarized from previous publications (<a href="#bib17 bib18" target="_blank">17, 18</a>). <b>E,</b> GSEA (<a href="#bib51 bib52" target="_blank">51, 52</a>) showing the enrichment of ATF4 target genes in SIRT3-downregulated genes in Karpas 422, OCI-LY1, and HBL1 cells with SIRT3 sh2 versus control scramble shRNAs. The rank lists were from RNA-seq analysis from <b>B</b>. The same ATF4 target gene list was used here as in <b>D</b>.</p>
eu_rights_str_mv openAccess
id Manara_db7ab204284e755044781a3a427e181c
identifier_str_mv 10.1158/2643-3230.30698634
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30698634
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY
spelling Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and SurvivalMeng Li (79487)Matthew R. Teater (15129060)Jun Young Hong (6588914)Noel R. Park (15129063)Cihangir Duy (15112006)Hao Shen (195461)Ling Wang (56577)Zhengming Chen (385056)Leandro Cerchietti (15091552)Shawn M. Davidson (14911596)Hening Lin (1306563)Ari M. Melnick (15110132)CancerMolecular and Cellular BiologyCellular Stress ResponsesGene RegulationPosttranscriptional and translational controlHematological CancersLymphomasMetabolism<p>Knocking down SIRT3 caused ATF4 signaling inhibition but not HIF1a. <b>A,</b> Dendrograms from hierarchical clustering of RNA-seq data from three DLBCL cells lines transduced with lentiviruses containing control (scramble) or two SIRT3 shRNAs. <b>B,</b> Heatmap showing differential expression in SIRT3 knockdown cells versus control (FC > 1.5, <i>q</i> < 0.05). <b>C,</b> Heatmap showing enrichment of SIRT3 knockdown signatures within key pathways. CHIP, chromatin immunoprecipitation; CHOP, C/EBP homologous protein; dn, down; KEGG, Kyoto Encyclopedia of Genes and Genomes; MEF, mouse embryonic fibroblast; TM, tunicamycin. <b>D,</b> GSEA (<a href="#bib51 bib52" target="_blank">51, 52</a>) showing the enrichment of ATF4 target genes in SIRT3-downregulated genes in Karpas 422, OCI-LY1, and HBL1 cells with SIRT3 sh1 versus control scramble shRNAs. The rank lists were from RNA-seq analysis from <b>B</b>. ATF4 target genes were summarized from previous publications (<a href="#bib17 bib18" target="_blank">17, 18</a>). <b>E,</b> GSEA (<a href="#bib51 bib52" target="_blank">51, 52</a>) showing the enrichment of ATF4 target genes in SIRT3-downregulated genes in Karpas 422, OCI-LY1, and HBL1 cells with SIRT3 sh2 versus control scramble shRNAs. The rank lists were from RNA-seq analysis from <b>B</b>. The same ATF4 target gene list was used here as in <b>D</b>.</p>2025-11-24T22:01:45ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1158/2643-3230.30698634https://figshare.com/articles/figure/Figure_1_from_Translational_Activation_of_ATF4_through_Mitochondrial_Anaplerotic_Metabolic_Pathways_Is_Required_for_DLBCL_Growth_and_Survival/30698634CC BYinfo:eu-repo/semantics/openAccessoai:figshare.com:article/306986342025-11-24T22:01:45Z
spellingShingle Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival
Meng Li (79487)
Cancer
Molecular and Cellular Biology
Cellular Stress Responses
Gene Regulation
Posttranscriptional and translational control
Hematological Cancers
Lymphomas
Metabolism
status_str publishedVersion
title Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival
title_full Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival
title_fullStr Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival
title_full_unstemmed Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival
title_short Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival
title_sort Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival
topic Cancer
Molecular and Cellular Biology
Cellular Stress Responses
Gene Regulation
Posttranscriptional and translational control
Hematological Cancers
Lymphomas
Metabolism