Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival
<p>Knocking down SIRT3 caused ATF4 signaling inhibition but not HIF1a. <b>A,</b> Dendrograms from hierarchical clustering of RNA-seq data from three DLBCL cells lines transduced with lentiviruses containing control (scramble) or two SIRT3 shRNAs. <b>B,</b> Heatmap showi...
Guardat en:
| Autor principal: | |
|---|---|
| Altres autors: | , , , , , , , , , , |
| Publicat: |
2025
|
| Matèries: | |
| Etiquetes: |
Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!
|
| _version_ | 1849927640592416768 |
|---|---|
| author | Meng Li (79487) |
| author2 | Matthew R. Teater (15129060) Jun Young Hong (6588914) Noel R. Park (15129063) Cihangir Duy (15112006) Hao Shen (195461) Ling Wang (56577) Zhengming Chen (385056) Leandro Cerchietti (15091552) Shawn M. Davidson (14911596) Hening Lin (1306563) Ari M. Melnick (15110132) |
| author2_role | author author author author author author author author author author author |
| author_facet | Meng Li (79487) Matthew R. Teater (15129060) Jun Young Hong (6588914) Noel R. Park (15129063) Cihangir Duy (15112006) Hao Shen (195461) Ling Wang (56577) Zhengming Chen (385056) Leandro Cerchietti (15091552) Shawn M. Davidson (14911596) Hening Lin (1306563) Ari M. Melnick (15110132) |
| author_role | author |
| dc.creator.none.fl_str_mv | Meng Li (79487) Matthew R. Teater (15129060) Jun Young Hong (6588914) Noel R. Park (15129063) Cihangir Duy (15112006) Hao Shen (195461) Ling Wang (56577) Zhengming Chen (385056) Leandro Cerchietti (15091552) Shawn M. Davidson (14911596) Hening Lin (1306563) Ari M. Melnick (15110132) |
| dc.date.none.fl_str_mv | 2025-11-24T22:01:45Z |
| dc.identifier.none.fl_str_mv | 10.1158/2643-3230.30698634 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/Figure_1_from_Translational_Activation_of_ATF4_through_Mitochondrial_Anaplerotic_Metabolic_Pathways_Is_Required_for_DLBCL_Growth_and_Survival/30698634 |
| dc.rights.none.fl_str_mv | CC BY info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Cancer Molecular and Cellular Biology Cellular Stress Responses Gene Regulation Posttranscriptional and translational control Hematological Cancers Lymphomas Metabolism |
| dc.title.none.fl_str_mv | Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p>Knocking down SIRT3 caused ATF4 signaling inhibition but not HIF1a. <b>A,</b> Dendrograms from hierarchical clustering of RNA-seq data from three DLBCL cells lines transduced with lentiviruses containing control (scramble) or two SIRT3 shRNAs. <b>B,</b> Heatmap showing differential expression in SIRT3 knockdown cells versus control (FC > 1.5, <i>q</i> < 0.05). <b>C,</b> Heatmap showing enrichment of SIRT3 knockdown signatures within key pathways. CHIP, chromatin immunoprecipitation; CHOP, C/EBP homologous protein; dn, down; KEGG, Kyoto Encyclopedia of Genes and Genomes; MEF, mouse embryonic fibroblast; TM, tunicamycin. <b>D,</b> GSEA (<a href="#bib51 bib52" target="_blank">51, 52</a>) showing the enrichment of ATF4 target genes in SIRT3-downregulated genes in Karpas 422, OCI-LY1, and HBL1 cells with SIRT3 sh1 versus control scramble shRNAs. The rank lists were from RNA-seq analysis from <b>B</b>. ATF4 target genes were summarized from previous publications (<a href="#bib17 bib18" target="_blank">17, 18</a>). <b>E,</b> GSEA (<a href="#bib51 bib52" target="_blank">51, 52</a>) showing the enrichment of ATF4 target genes in SIRT3-downregulated genes in Karpas 422, OCI-LY1, and HBL1 cells with SIRT3 sh2 versus control scramble shRNAs. The rank lists were from RNA-seq analysis from <b>B</b>. The same ATF4 target gene list was used here as in <b>D</b>.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_db7ab204284e755044781a3a427e181c |
| identifier_str_mv | 10.1158/2643-3230.30698634 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/30698634 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY |
| spelling | Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and SurvivalMeng Li (79487)Matthew R. Teater (15129060)Jun Young Hong (6588914)Noel R. Park (15129063)Cihangir Duy (15112006)Hao Shen (195461)Ling Wang (56577)Zhengming Chen (385056)Leandro Cerchietti (15091552)Shawn M. Davidson (14911596)Hening Lin (1306563)Ari M. Melnick (15110132)CancerMolecular and Cellular BiologyCellular Stress ResponsesGene RegulationPosttranscriptional and translational controlHematological CancersLymphomasMetabolism<p>Knocking down SIRT3 caused ATF4 signaling inhibition but not HIF1a. <b>A,</b> Dendrograms from hierarchical clustering of RNA-seq data from three DLBCL cells lines transduced with lentiviruses containing control (scramble) or two SIRT3 shRNAs. <b>B,</b> Heatmap showing differential expression in SIRT3 knockdown cells versus control (FC > 1.5, <i>q</i> < 0.05). <b>C,</b> Heatmap showing enrichment of SIRT3 knockdown signatures within key pathways. CHIP, chromatin immunoprecipitation; CHOP, C/EBP homologous protein; dn, down; KEGG, Kyoto Encyclopedia of Genes and Genomes; MEF, mouse embryonic fibroblast; TM, tunicamycin. <b>D,</b> GSEA (<a href="#bib51 bib52" target="_blank">51, 52</a>) showing the enrichment of ATF4 target genes in SIRT3-downregulated genes in Karpas 422, OCI-LY1, and HBL1 cells with SIRT3 sh1 versus control scramble shRNAs. The rank lists were from RNA-seq analysis from <b>B</b>. ATF4 target genes were summarized from previous publications (<a href="#bib17 bib18" target="_blank">17, 18</a>). <b>E,</b> GSEA (<a href="#bib51 bib52" target="_blank">51, 52</a>) showing the enrichment of ATF4 target genes in SIRT3-downregulated genes in Karpas 422, OCI-LY1, and HBL1 cells with SIRT3 sh2 versus control scramble shRNAs. The rank lists were from RNA-seq analysis from <b>B</b>. The same ATF4 target gene list was used here as in <b>D</b>.</p>2025-11-24T22:01:45ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1158/2643-3230.30698634https://figshare.com/articles/figure/Figure_1_from_Translational_Activation_of_ATF4_through_Mitochondrial_Anaplerotic_Metabolic_Pathways_Is_Required_for_DLBCL_Growth_and_Survival/30698634CC BYinfo:eu-repo/semantics/openAccessoai:figshare.com:article/306986342025-11-24T22:01:45Z |
| spellingShingle | Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival Meng Li (79487) Cancer Molecular and Cellular Biology Cellular Stress Responses Gene Regulation Posttranscriptional and translational control Hematological Cancers Lymphomas Metabolism |
| status_str | publishedVersion |
| title | Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival |
| title_full | Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival |
| title_fullStr | Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival |
| title_full_unstemmed | Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival |
| title_short | Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival |
| title_sort | Figure 1 from Translational Activation of ATF4 through Mitochondrial Anaplerotic Metabolic Pathways Is Required for DLBCL Growth and Survival |
| topic | Cancer Molecular and Cellular Biology Cellular Stress Responses Gene Regulation Posttranscriptional and translational control Hematological Cancers Lymphomas Metabolism |