Deciphering the Key Factors Governing Mn<sup>4+</sup> Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn<sup>4+</sup> Interactions

Achieving wide color gamut in liquid crystal displays relies critically on narrow-band red-emitting phosphors. Mn<sup>4+</sup>-activated phosphors are promising candidates due to their sharp emission, yet modulating their zero-phonon line wavelengths remains challenging. This study emplo...

Mô tả đầy đủ

Đã lưu trong:
Chi tiết về thư mục
Tác giả chính: Jinxin Wang (1696837) (author)
Tác giả khác: Yuanyuan Dou (8472507) (author), Jiahua Zhang (567192) (author), Mingyue Chen (1408384) (author), Zhen Song (412533) (author), Quanlin Liu (1412533) (author)
Được phát hành: 2025
Những chủ đề:
Các nhãn: Thêm thẻ
Không có thẻ, Là người đầu tiên thẻ bản ghi này!
_version_ 1851482227454509056
author Jinxin Wang (1696837)
author2 Yuanyuan Dou (8472507)
Jiahua Zhang (567192)
Mingyue Chen (1408384)
Zhen Song (412533)
Quanlin Liu (1412533)
author2_role author
author
author
author
author
author_facet Jinxin Wang (1696837)
Yuanyuan Dou (8472507)
Jiahua Zhang (567192)
Mingyue Chen (1408384)
Zhen Song (412533)
Quanlin Liu (1412533)
author_role author
dc.creator.none.fl_str_mv Jinxin Wang (1696837)
Yuanyuan Dou (8472507)
Jiahua Zhang (567192)
Mingyue Chen (1408384)
Zhen Song (412533)
Quanlin Liu (1412533)
dc.date.none.fl_str_mv 2025-10-08T03:43:19Z
dc.identifier.none.fl_str_mv 10.1021/acs.jpcc.5c05715.s002
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Deciphering_the_Key_Factors_Governing_Mn_sup_4_sup_Zero-Phonon_Line_Characteristics_via_Machine_Learning_Decoding_of_Host_Mn_sup_4_sup_Interactions/30302942
dc.rights.none.fl_str_mv CC BY-NC 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Microbiology
Cell Biology
Neuroscience
Biotechnology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
related parameters dominate
promising candidates due
cumulative importance ),
also contribute significantly
928 ), revealing
17 oxides ).
emission peak wavelengths
2 </ sup
g </ sub
2g </ sub
host – mn
band red emitters
4 +</ sup
4 </ sup
band red
r </
sharp emission
>< sup
yet modulating
transition energy
test mae
targeted strategy
oxyfluoride phosphors
geometric factors
emitting phosphors
discovering next
bond angles
6 fluoroxides
42 fluorides
133 nm
dc.title.none.fl_str_mv Deciphering the Key Factors Governing Mn<sup>4+</sup> Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn<sup>4+</sup> Interactions
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description Achieving wide color gamut in liquid crystal displays relies critically on narrow-band red-emitting phosphors. Mn<sup>4+</sup>-activated phosphors are promising candidates due to their sharp emission, yet modulating their zero-phonon line wavelengths remains challenging. This study employs machine learning to decode host–Mn<sup>4+</sup> interactions across 65 distinct hosts (42 fluorides, 6 fluoroxides, 17 oxides). By extracting 29 structural descriptors and leveraging a random forest regression model, we identify nine key features governing ZPL wavelengths. Electronegativity-related parameters dominate (77.83% cumulative importance), while geometric factors (bond angles, distances) also contribute significantly. The model achieves high accuracy (test MAE = 4.133 nm, <i>R</i><sup>2</sup> = 0.928), revealing that high electronegativity in secondary-coordination ions enhances Mn–ligand covalency, reducing the E<sub>g</sub> → <sup>4</sup>A<sub>2g</sub> transition energy and redshifting the emission peak wavelengths. This work identifies key design principles for Mn<sup>4+</sup>-activated fluoride, oxide, and oxyfluoride phosphors, enabling a targeted strategy for discovering next-generation narrow-band red emitters.
eu_rights_str_mv openAccess
id Manara_dcbbbb80cd9d7e2ccc863f94e3cc6ec1
identifier_str_mv 10.1021/acs.jpcc.5c05715.s002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30302942
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY-NC 4.0
spelling Deciphering the Key Factors Governing Mn<sup>4+</sup> Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn<sup>4+</sup> InteractionsJinxin Wang (1696837)Yuanyuan Dou (8472507)Jiahua Zhang (567192)Mingyue Chen (1408384)Zhen Song (412533)Quanlin Liu (1412533)BiochemistryMicrobiologyCell BiologyNeuroscienceBiotechnologyEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedrelated parameters dominatepromising candidates duecumulative importance ),also contribute significantly928 ), revealing17 oxides ).emission peak wavelengths2 </ supg </ sub2g </ subhost – mnband red emitters4 +</ sup4 </ supband redr </sharp emission>< supyet modulatingtransition energytest maetargeted strategyoxyfluoride phosphorsgeometric factorsemitting phosphorsdiscovering nextbond angles6 fluoroxides42 fluorides133 nmAchieving wide color gamut in liquid crystal displays relies critically on narrow-band red-emitting phosphors. Mn<sup>4+</sup>-activated phosphors are promising candidates due to their sharp emission, yet modulating their zero-phonon line wavelengths remains challenging. This study employs machine learning to decode host–Mn<sup>4+</sup> interactions across 65 distinct hosts (42 fluorides, 6 fluoroxides, 17 oxides). By extracting 29 structural descriptors and leveraging a random forest regression model, we identify nine key features governing ZPL wavelengths. Electronegativity-related parameters dominate (77.83% cumulative importance), while geometric factors (bond angles, distances) also contribute significantly. The model achieves high accuracy (test MAE = 4.133 nm, <i>R</i><sup>2</sup> = 0.928), revealing that high electronegativity in secondary-coordination ions enhances Mn–ligand covalency, reducing the E<sub>g</sub> → <sup>4</sup>A<sub>2g</sub> transition energy and redshifting the emission peak wavelengths. This work identifies key design principles for Mn<sup>4+</sup>-activated fluoride, oxide, and oxyfluoride phosphors, enabling a targeted strategy for discovering next-generation narrow-band red emitters.2025-10-08T03:43:19ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1021/acs.jpcc.5c05715.s002https://figshare.com/articles/dataset/Deciphering_the_Key_Factors_Governing_Mn_sup_4_sup_Zero-Phonon_Line_Characteristics_via_Machine_Learning_Decoding_of_Host_Mn_sup_4_sup_Interactions/30302942CC BY-NC 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/303029422025-10-08T03:43:19Z
spellingShingle Deciphering the Key Factors Governing Mn<sup>4+</sup> Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn<sup>4+</sup> Interactions
Jinxin Wang (1696837)
Biochemistry
Microbiology
Cell Biology
Neuroscience
Biotechnology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
related parameters dominate
promising candidates due
cumulative importance ),
also contribute significantly
928 ), revealing
17 oxides ).
emission peak wavelengths
2 </ sup
g </ sub
2g </ sub
host – mn
band red emitters
4 +</ sup
4 </ sup
band red
r </
sharp emission
>< sup
yet modulating
transition energy
test mae
targeted strategy
oxyfluoride phosphors
geometric factors
emitting phosphors
discovering next
bond angles
6 fluoroxides
42 fluorides
133 nm
status_str publishedVersion
title Deciphering the Key Factors Governing Mn<sup>4+</sup> Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn<sup>4+</sup> Interactions
title_full Deciphering the Key Factors Governing Mn<sup>4+</sup> Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn<sup>4+</sup> Interactions
title_fullStr Deciphering the Key Factors Governing Mn<sup>4+</sup> Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn<sup>4+</sup> Interactions
title_full_unstemmed Deciphering the Key Factors Governing Mn<sup>4+</sup> Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn<sup>4+</sup> Interactions
title_short Deciphering the Key Factors Governing Mn<sup>4+</sup> Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn<sup>4+</sup> Interactions
title_sort Deciphering the Key Factors Governing Mn<sup>4+</sup> Zero-Phonon Line Characteristics via Machine Learning Decoding of Host–Mn<sup>4+</sup> Interactions
topic Biochemistry
Microbiology
Cell Biology
Neuroscience
Biotechnology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
related parameters dominate
promising candidates due
cumulative importance ),
also contribute significantly
928 ), revealing
17 oxides ).
emission peak wavelengths
2 </ sup
g </ sub
2g </ sub
host – mn
band red emitters
4 +</ sup
4 </ sup
band red
r </
sharp emission
>< sup
yet modulating
transition energy
test mae
targeted strategy
oxyfluoride phosphors
geometric factors
emitting phosphors
discovering next
bond angles
6 fluoroxides
42 fluorides
133 nm