KEGG analysis of downregulated DEPs.

<div><p>Objective</p><p>Radiation-induced brain injury (RIBI) is a significant complication following radiotherapy for brain tumors, leading to neurocognitive deficits and other neurological impairments. This study aims to identify potential biomarkers and therapeutic targets...

Cijeli opis

Spremljeno u:
Bibliografski detalji
Glavni autor: Jing Liu (38537) (author)
Daljnji autori: Junshuang Wang (22683435) (author), Shuang Lv (660117) (author), Hengjiao Wang (21539904) (author), Defu Yang (735577) (author), Ying Zhang (40767) (author), Ying Li (38224) (author), Huiling Qu (6104225) (author), Ying Xu (9172) (author), Ying Yan (47692) (author)
Izdano: 2025
Teme:
Oznake: Dodaj oznaku
Bez oznaka, Budi prvi tko označuje ovaj zapis!
Opis
Sažetak:<div><p>Objective</p><p>Radiation-induced brain injury (RIBI) is a significant complication following radiotherapy for brain tumors, leading to neurocognitive deficits and other neurological impairments. This study aims to identify potential biomarkers and therapeutic targets for RIBI by utilizing advanced proteomic techniques to explore the molecular mechanisms underlying RIBI.</p><p>Methods</p><p>A rat model of RIBI was established and subjected to whole-brain irradiation (30 Gy). Tandem mass tagging (TMT)-based quantitative proteomics, combined with high-resolution mass spectrometry, was used to identify differentially expressed proteins (DEPs) in the brain tissues of irradiated rats. Gene Ontology (GO) enrichment and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analyses were conducted to identify the biological processes and pathways involved. Protein-protein interaction (PPI) networks were constructed to identify key hub proteins.</p><p>Results</p><p>A total of 35 DEPs were identified, including PHLDA3, APOE and CPE. GO enrichment analysis revealed that the DEPs were mainly involved in lipid transport, cell adhesion, and metabolic processes. KEGG analysis highlighted the enrichment of pathways related to metabolism, tight junctions, and PPAR signaling. APOE was identified as a key hub protein through PPI network analysis, indicating its potential role in RIBI pathophysiology. Immunohistochemistry further validated the increased expression of PHLDA3, APOE, and CPE in the brain tissue of irradiated rats.</p><p>Conclusion</p><p>This study provides valuable insights into the molecular mechanisms of RIBI by identifying key proteins and their associated pathways. The findings suggest that these proteins, particularly APOE and PHLDA3, could serve as potential biomarkers and therapeutic targets for clinical intervention in RIBI. These results not only enhance our understanding of RIBI’s molecular pathology but also open new avenues for the development of targeted therapies to mitigate radiation-induced neurotoxicity.</p></div>