Classification performance across the three simulation settings.

<p>Classification performance across the three simulation settings.</p>

Gardado en:
Detalles Bibliográficos
Autor Principal: Fatemeh Keikha (20917848) (author)
Outros autores: Chuanyuan Wang (22676721) (author), Zhixia Yang (3180567) (author), Zhi-Ping Liu (149304) (author)
Publicado: 2025
Subjects:
Tags: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
_version_ 1849927641096781824
author Fatemeh Keikha (20917848)
author2 Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
author2_role author
author
author
author_facet Fatemeh Keikha (20917848)
Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
author_role author
dc.creator.none.fl_str_mv Fatemeh Keikha (20917848)
Chuanyuan Wang (22676721)
Zhixia Yang (3180567)
Zhi-Ping Liu (149304)
dc.date.none.fl_str_mv 2025-11-24T18:36:55Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013743.t001
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Classification_performance_across_the_three_simulation_settings_/30697993
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data
dc.title.none.fl_str_mv Classification performance across the three simulation settings.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Classification performance across the three simulation settings.</p>
eu_rights_str_mv openAccess
id Manara_df417fce409a45b444e9f06ed3960b66
identifier_str_mv 10.1371/journal.pcbi.1013743.t001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697993
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Classification performance across the three simulation settings.Fatemeh Keikha (20917848)Chuanyuan Wang (22676721)Zhixia Yang (3180567)Zhi-Ping Liu (149304)MedicineGeneticsBiotechnologyCancerInfectious DiseasesBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedwasserstein optimal transportreal world datasetquantified via gromovenhancing diagnostic precisiondynamic network indexdeep neural networkablation studies confirmregulatory role transitionsgene regulatory networkscombining regulatory rewiringanalyzing disease evolutiontemporal expression dynamicsreflect dynamic changesneglecting structural rewiringmultilayer network modelsmodeling disease progressionstate alignment providesunderstanding cancer progressionstate graph alignmentdisease state classificationstate specific biomarkersdisease progressionstate alignmentspecific expressionmultilayer graphcancer progressiondisease stateregulatory variabilityregulatory rolesstructural shiftssignificant changesprioritized biomarkersclassification accuracystate singlexlink ">topological featuressynthetic simulatedranked usingpowerful strategyoverall performancemeaningful shiftsgats ),gastric adenocarcinomagac ),framework designedfindings suggestdni ),distinct layercontextualized embeddingscell data<p>Classification performance across the three simulation settings.</p>2025-11-24T18:36:55ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pcbi.1013743.t001https://figshare.com/articles/dataset/Classification_performance_across_the_three_simulation_settings_/30697993CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306979932025-11-24T18:36:55Z
spellingShingle Classification performance across the three simulation settings.
Fatemeh Keikha (20917848)
Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data
status_str publishedVersion
title Classification performance across the three simulation settings.
title_full Classification performance across the three simulation settings.
title_fullStr Classification performance across the three simulation settings.
title_full_unstemmed Classification performance across the three simulation settings.
title_short Classification performance across the three simulation settings.
title_sort Classification performance across the three simulation settings.
topic Medicine
Genetics
Biotechnology
Cancer
Infectious Diseases
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
wasserstein optimal transport
real world dataset
quantified via gromov
enhancing diagnostic precision
dynamic network index
deep neural network
ablation studies confirm
regulatory role transitions
gene regulatory networks
combining regulatory rewiring
analyzing disease evolution
temporal expression dynamics
reflect dynamic changes
neglecting structural rewiring
multilayer network models
modeling disease progression
state alignment provides
understanding cancer progression
state graph alignment
disease state classification
state specific biomarkers
disease progression
state alignment
specific expression
multilayer graph
cancer progression
disease state
regulatory variability
regulatory roles
structural shifts
significant changes
prioritized biomarkers
classification accuracy
state single
xlink ">
topological features
synthetic simulated
ranked using
powerful strategy
overall performance
meaningful shifts
gats ),
gastric adenocarcinoma
gac ),
framework designed
findings suggest
dni ),
distinct layer
contextualized embeddings
cell data