Precision-Recall curves comparing 7 machine learning models and a baseline value.

<p>PR curves are computed using the withheld test data. SVM is the model with the highest area under the curve.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Andres Portocarrero-Bonifaz (21367929) (author)
مؤلفون آخرون: Salman Syed (18880470) (author), Maxwell Kassel (21367932) (author), Grant W. McKenzie (21367935) (author), Vishwa M. Shah (21367938) (author), Bryce M. Forry (21367941) (author), Jeremy T. Gaskins (9281129) (author), Keith T. Sowards (21367944) (author), Thulasi Babitha Avula (21367947) (author), Adrianna Masters (21367950) (author), Jose G. Schneider (21367953) (author), Scott R. Silva (14975143) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852020398442414080
author Andres Portocarrero-Bonifaz (21367929)
author2 Salman Syed (18880470)
Maxwell Kassel (21367932)
Grant W. McKenzie (21367935)
Vishwa M. Shah (21367938)
Bryce M. Forry (21367941)
Jeremy T. Gaskins (9281129)
Keith T. Sowards (21367944)
Thulasi Babitha Avula (21367947)
Adrianna Masters (21367950)
Jose G. Schneider (21367953)
Scott R. Silva (14975143)
author2_role author
author
author
author
author
author
author
author
author
author
author
author_facet Andres Portocarrero-Bonifaz (21367929)
Salman Syed (18880470)
Maxwell Kassel (21367932)
Grant W. McKenzie (21367935)
Vishwa M. Shah (21367938)
Bryce M. Forry (21367941)
Jeremy T. Gaskins (9281129)
Keith T. Sowards (21367944)
Thulasi Babitha Avula (21367947)
Adrianna Masters (21367950)
Jose G. Schneider (21367953)
Scott R. Silva (14975143)
author_role author
dc.creator.none.fl_str_mv Andres Portocarrero-Bonifaz (21367929)
Salman Syed (18880470)
Maxwell Kassel (21367932)
Grant W. McKenzie (21367935)
Vishwa M. Shah (21367938)
Bryce M. Forry (21367941)
Jeremy T. Gaskins (9281129)
Keith T. Sowards (21367944)
Thulasi Babitha Avula (21367947)
Adrianna Masters (21367950)
Jose G. Schneider (21367953)
Scott R. Silva (14975143)
dc.date.none.fl_str_mv 2025-05-15T14:48:20Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0312208.g002
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Precision-Recall_curves_comparing_7_machine_learning_models_and_a_baseline_value_/29074611
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biotechnology
Cancer
Infectious Diseases
Virology
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
without grade 3
support vector machines
rectum differed significantly
predicting grade 3
predict grade 3
normmcc testing scores
gaussian naive bayes
f1 testing scores
external beam radiotherapy
charlson comorbidity index
applying exclusion criteria
achieving satisfactory performance
accuracy testing scores
deep learning networks
creating multivariable models
final model performance
machine learning presents
predict patient outcomes
advancing patient care
machine learning models
traditional statistical analysis
predict specific toxicities
high dose rate
gynecological cancer patients
underwent hdr brachytherapy
machine learning
applied models
ranking model
xlink ">
women worldwide
toxicity data
retrospective analysis
recent studies
random forest
prevalent cancers
ovoid applicators
often used
novel solution
nearest neighbors
logistic regression
hyperparameter tuning
higher toxicities
dosimetric variables
data availability
characterized using
233 patients
dc.title.none.fl_str_mv Precision-Recall curves comparing 7 machine learning models and a baseline value.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>PR curves are computed using the withheld test data. SVM is the model with the highest area under the curve.</p>
eu_rights_str_mv openAccess
id Manara_df47d7dfe4a7e85f2eefa3fdaf09ef08
identifier_str_mv 10.1371/journal.pone.0312208.g002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29074611
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Precision-Recall curves comparing 7 machine learning models and a baseline value.Andres Portocarrero-Bonifaz (21367929)Salman Syed (18880470)Maxwell Kassel (21367932)Grant W. McKenzie (21367935)Vishwa M. Shah (21367938)Bryce M. Forry (21367941)Jeremy T. Gaskins (9281129)Keith T. Sowards (21367944)Thulasi Babitha Avula (21367947)Adrianna Masters (21367950)Jose G. Schneider (21367953)Scott R. Silva (14975143)BiotechnologyCancerInfectious DiseasesVirologyBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedwithout grade 3support vector machinesrectum differed significantlypredicting grade 3predict grade 3normmcc testing scoresgaussian naive bayesf1 testing scoresexternal beam radiotherapycharlson comorbidity indexapplying exclusion criteriaachieving satisfactory performanceaccuracy testing scoresdeep learning networkscreating multivariable modelsfinal model performancemachine learning presentspredict patient outcomesadvancing patient caremachine learning modelstraditional statistical analysispredict specific toxicitieshigh dose rategynecological cancer patientsunderwent hdr brachytherapymachine learningapplied modelsranking modelxlink ">women worldwidetoxicity dataretrospective analysisrecent studiesrandom forestprevalent cancersovoid applicatorsoften usednovel solutionnearest neighborslogistic regressionhyperparameter tuninghigher toxicitiesdosimetric variablesdata availabilitycharacterized using233 patients<p>PR curves are computed using the withheld test data. SVM is the model with the highest area under the curve.</p>2025-05-15T14:48:20ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0312208.g002https://figshare.com/articles/figure/Precision-Recall_curves_comparing_7_machine_learning_models_and_a_baseline_value_/29074611CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/290746112025-05-15T14:48:20Z
spellingShingle Precision-Recall curves comparing 7 machine learning models and a baseline value.
Andres Portocarrero-Bonifaz (21367929)
Biotechnology
Cancer
Infectious Diseases
Virology
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
without grade 3
support vector machines
rectum differed significantly
predicting grade 3
predict grade 3
normmcc testing scores
gaussian naive bayes
f1 testing scores
external beam radiotherapy
charlson comorbidity index
applying exclusion criteria
achieving satisfactory performance
accuracy testing scores
deep learning networks
creating multivariable models
final model performance
machine learning presents
predict patient outcomes
advancing patient care
machine learning models
traditional statistical analysis
predict specific toxicities
high dose rate
gynecological cancer patients
underwent hdr brachytherapy
machine learning
applied models
ranking model
xlink ">
women worldwide
toxicity data
retrospective analysis
recent studies
random forest
prevalent cancers
ovoid applicators
often used
novel solution
nearest neighbors
logistic regression
hyperparameter tuning
higher toxicities
dosimetric variables
data availability
characterized using
233 patients
status_str publishedVersion
title Precision-Recall curves comparing 7 machine learning models and a baseline value.
title_full Precision-Recall curves comparing 7 machine learning models and a baseline value.
title_fullStr Precision-Recall curves comparing 7 machine learning models and a baseline value.
title_full_unstemmed Precision-Recall curves comparing 7 machine learning models and a baseline value.
title_short Precision-Recall curves comparing 7 machine learning models and a baseline value.
title_sort Precision-Recall curves comparing 7 machine learning models and a baseline value.
topic Biotechnology
Cancer
Infectious Diseases
Virology
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
without grade 3
support vector machines
rectum differed significantly
predicting grade 3
predict grade 3
normmcc testing scores
gaussian naive bayes
f1 testing scores
external beam radiotherapy
charlson comorbidity index
applying exclusion criteria
achieving satisfactory performance
accuracy testing scores
deep learning networks
creating multivariable models
final model performance
machine learning presents
predict patient outcomes
advancing patient care
machine learning models
traditional statistical analysis
predict specific toxicities
high dose rate
gynecological cancer patients
underwent hdr brachytherapy
machine learning
applied models
ranking model
xlink ">
women worldwide
toxicity data
retrospective analysis
recent studies
random forest
prevalent cancers
ovoid applicators
often used
novel solution
nearest neighbors
logistic regression
hyperparameter tuning
higher toxicities
dosimetric variables
data availability
characterized using
233 patients