Precision-Recall curves comparing 7 machine learning models and a baseline value.
<p>PR curves are computed using the withheld test data. SVM is the model with the highest area under the curve.</p>
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , , , , , , , , , |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| _version_ | 1852020398442414080 |
|---|---|
| author | Andres Portocarrero-Bonifaz (21367929) |
| author2 | Salman Syed (18880470) Maxwell Kassel (21367932) Grant W. McKenzie (21367935) Vishwa M. Shah (21367938) Bryce M. Forry (21367941) Jeremy T. Gaskins (9281129) Keith T. Sowards (21367944) Thulasi Babitha Avula (21367947) Adrianna Masters (21367950) Jose G. Schneider (21367953) Scott R. Silva (14975143) |
| author2_role | author author author author author author author author author author author |
| author_facet | Andres Portocarrero-Bonifaz (21367929) Salman Syed (18880470) Maxwell Kassel (21367932) Grant W. McKenzie (21367935) Vishwa M. Shah (21367938) Bryce M. Forry (21367941) Jeremy T. Gaskins (9281129) Keith T. Sowards (21367944) Thulasi Babitha Avula (21367947) Adrianna Masters (21367950) Jose G. Schneider (21367953) Scott R. Silva (14975143) |
| author_role | author |
| dc.creator.none.fl_str_mv | Andres Portocarrero-Bonifaz (21367929) Salman Syed (18880470) Maxwell Kassel (21367932) Grant W. McKenzie (21367935) Vishwa M. Shah (21367938) Bryce M. Forry (21367941) Jeremy T. Gaskins (9281129) Keith T. Sowards (21367944) Thulasi Babitha Avula (21367947) Adrianna Masters (21367950) Jose G. Schneider (21367953) Scott R. Silva (14975143) |
| dc.date.none.fl_str_mv | 2025-05-15T14:48:20Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pone.0312208.g002 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/Precision-Recall_curves_comparing_7_machine_learning_models_and_a_baseline_value_/29074611 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Biotechnology Cancer Infectious Diseases Virology Biological Sciences not elsewhere classified Information Systems not elsewhere classified without grade 3 support vector machines rectum differed significantly predicting grade 3 predict grade 3 normmcc testing scores gaussian naive bayes f1 testing scores external beam radiotherapy charlson comorbidity index applying exclusion criteria achieving satisfactory performance accuracy testing scores deep learning networks creating multivariable models final model performance machine learning presents predict patient outcomes advancing patient care machine learning models traditional statistical analysis predict specific toxicities high dose rate gynecological cancer patients underwent hdr brachytherapy machine learning applied models ranking model xlink "> women worldwide toxicity data retrospective analysis recent studies random forest prevalent cancers ovoid applicators often used novel solution nearest neighbors logistic regression hyperparameter tuning higher toxicities dosimetric variables data availability characterized using 233 patients |
| dc.title.none.fl_str_mv | Precision-Recall curves comparing 7 machine learning models and a baseline value. |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p>PR curves are computed using the withheld test data. SVM is the model with the highest area under the curve.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_df47d7dfe4a7e85f2eefa3fdaf09ef08 |
| identifier_str_mv | 10.1371/journal.pone.0312208.g002 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/29074611 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Precision-Recall curves comparing 7 machine learning models and a baseline value.Andres Portocarrero-Bonifaz (21367929)Salman Syed (18880470)Maxwell Kassel (21367932)Grant W. McKenzie (21367935)Vishwa M. Shah (21367938)Bryce M. Forry (21367941)Jeremy T. Gaskins (9281129)Keith T. Sowards (21367944)Thulasi Babitha Avula (21367947)Adrianna Masters (21367950)Jose G. Schneider (21367953)Scott R. Silva (14975143)BiotechnologyCancerInfectious DiseasesVirologyBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedwithout grade 3support vector machinesrectum differed significantlypredicting grade 3predict grade 3normmcc testing scoresgaussian naive bayesf1 testing scoresexternal beam radiotherapycharlson comorbidity indexapplying exclusion criteriaachieving satisfactory performanceaccuracy testing scoresdeep learning networkscreating multivariable modelsfinal model performancemachine learning presentspredict patient outcomesadvancing patient caremachine learning modelstraditional statistical analysispredict specific toxicitieshigh dose rategynecological cancer patientsunderwent hdr brachytherapymachine learningapplied modelsranking modelxlink ">women worldwidetoxicity dataretrospective analysisrecent studiesrandom forestprevalent cancersovoid applicatorsoften usednovel solutionnearest neighborslogistic regressionhyperparameter tuninghigher toxicitiesdosimetric variablesdata availabilitycharacterized using233 patients<p>PR curves are computed using the withheld test data. SVM is the model with the highest area under the curve.</p>2025-05-15T14:48:20ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0312208.g002https://figshare.com/articles/figure/Precision-Recall_curves_comparing_7_machine_learning_models_and_a_baseline_value_/29074611CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/290746112025-05-15T14:48:20Z |
| spellingShingle | Precision-Recall curves comparing 7 machine learning models and a baseline value. Andres Portocarrero-Bonifaz (21367929) Biotechnology Cancer Infectious Diseases Virology Biological Sciences not elsewhere classified Information Systems not elsewhere classified without grade 3 support vector machines rectum differed significantly predicting grade 3 predict grade 3 normmcc testing scores gaussian naive bayes f1 testing scores external beam radiotherapy charlson comorbidity index applying exclusion criteria achieving satisfactory performance accuracy testing scores deep learning networks creating multivariable models final model performance machine learning presents predict patient outcomes advancing patient care machine learning models traditional statistical analysis predict specific toxicities high dose rate gynecological cancer patients underwent hdr brachytherapy machine learning applied models ranking model xlink "> women worldwide toxicity data retrospective analysis recent studies random forest prevalent cancers ovoid applicators often used novel solution nearest neighbors logistic regression hyperparameter tuning higher toxicities dosimetric variables data availability characterized using 233 patients |
| status_str | publishedVersion |
| title | Precision-Recall curves comparing 7 machine learning models and a baseline value. |
| title_full | Precision-Recall curves comparing 7 machine learning models and a baseline value. |
| title_fullStr | Precision-Recall curves comparing 7 machine learning models and a baseline value. |
| title_full_unstemmed | Precision-Recall curves comparing 7 machine learning models and a baseline value. |
| title_short | Precision-Recall curves comparing 7 machine learning models and a baseline value. |
| title_sort | Precision-Recall curves comparing 7 machine learning models and a baseline value. |
| topic | Biotechnology Cancer Infectious Diseases Virology Biological Sciences not elsewhere classified Information Systems not elsewhere classified without grade 3 support vector machines rectum differed significantly predicting grade 3 predict grade 3 normmcc testing scores gaussian naive bayes f1 testing scores external beam radiotherapy charlson comorbidity index applying exclusion criteria achieving satisfactory performance accuracy testing scores deep learning networks creating multivariable models final model performance machine learning presents predict patient outcomes advancing patient care machine learning models traditional statistical analysis predict specific toxicities high dose rate gynecological cancer patients underwent hdr brachytherapy machine learning applied models ranking model xlink "> women worldwide toxicity data retrospective analysis recent studies random forest prevalent cancers ovoid applicators often used novel solution nearest neighbors logistic regression hyperparameter tuning higher toxicities dosimetric variables data availability characterized using 233 patients |