Raw performance metrics for the MLP model.

<p>The table presents the raw output from the bootstrap analysis, showing the mean, lower, and upper confidence interval bounds for the AUC of local and federated models, and the performance gain (<i>Δ</i>AUC). It provides a hospital-level breakdown of the mean AUC and 95% CI for t...

Descrición completa

Gardado en:
Detalles Bibliográficos
Autor Principal: Roberta Moreira Wichmann (14259316) (author)
Outros autores: Murilo Afonso Robiati Bigoto (22676715) (author), Alexandre Dias Porto Chiavegatto Filho (14259328) (author)
Publicado: 2025
Subjects:
Tags: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!
_version_ 1849927641229950976
author Roberta Moreira Wichmann (14259316)
author2 Murilo Afonso Robiati Bigoto (22676715)
Alexandre Dias Porto Chiavegatto Filho (14259328)
author2_role author
author
author_facet Roberta Moreira Wichmann (14259316)
Murilo Afonso Robiati Bigoto (22676715)
Alexandre Dias Porto Chiavegatto Filho (14259328)
author_role author
dc.creator.none.fl_str_mv Roberta Moreira Wichmann (14259316)
Murilo Afonso Robiati Bigoto (22676715)
Alexandre Dias Porto Chiavegatto Filho (14259328)
dc.date.none.fl_str_mv 2025-11-24T18:35:36Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013695.s003
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Raw_performance_metrics_for_the_MLP_model_/30697794
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Ecology
Cancer
Science Policy
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
via parameter aggregation
using ensemble aggregation
strong inverse correlation
maximum performance degradation
benefits requires caution
beneficial collaborative effect
>&# 916 ;</
19 mortality using
19 mortality prediction
local patient volume
statistically certain benefits
statistical significance showed
0273 ]) due
auc crossed zero
study validates fl
fl models demonstrated
performance gain (<
evaluated federated learning
div >< p
collaborative model ’
auc minus auc
local data scarcity
ci [– 0
gain ’
federated learning
local validation
universally certain
statistical advantage
6307 ])
auc across
– 0
volatile algorithm
smallest hospital
particularly evident
network (<
multicentric sample
multicenter sample
limited institutions
layer perceptron
iid ).
high sensitivity
findings underscore
every site
enabling mechanism
despite achieving
confidence intervals
500 ).
022 patients
dc.title.none.fl_str_mv Raw performance metrics for the MLP model.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>The table presents the raw output from the bootstrap analysis, showing the mean, lower, and upper confidence interval bounds for the AUC of local and federated models, and the performance gain (<i>Δ</i>AUC). It provides a hospital-level breakdown of the mean AUC and 95% CI for the local and federated MLP models. The table also includes the mean <i>Δ</i>AUC and its confidence interval, allowing for an assessment of the performance gain achieved by the federated neural network.</p> <p>(XLSX)</p>
eu_rights_str_mv openAccess
id Manara_df689ce918219032a418099f64cec160
identifier_str_mv 10.1371/journal.pcbi.1013695.s003
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697794
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Raw performance metrics for the MLP model.Roberta Moreira Wichmann (14259316)Murilo Afonso Robiati Bigoto (22676715)Alexandre Dias Porto Chiavegatto Filho (14259328)Cell BiologyEcologyCancerScience PolicyBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedvia parameter aggregationusing ensemble aggregationstrong inverse correlationmaximum performance degradationbenefits requires cautionbeneficial collaborative effect>&# 916 ;</19 mortality using19 mortality predictionlocal patient volumestatistically certain benefitsstatistical significance showed0273 ]) dueauc crossed zerostudy validates flfl models demonstratedperformance gain (<evaluated federated learningdiv >< pcollaborative model ’auc minus auclocal data scarcityci [– 0gain ’federated learninglocal validationuniversally certainstatistical advantage6307 ])auc across– 0volatile algorithmsmallest hospitalparticularly evidentnetwork (<multicentric samplemulticenter samplelimited institutionslayer perceptroniid ).high sensitivityfindings underscoreevery siteenabling mechanismdespite achievingconfidence intervals500 ).022 patients<p>The table presents the raw output from the bootstrap analysis, showing the mean, lower, and upper confidence interval bounds for the AUC of local and federated models, and the performance gain (<i>Δ</i>AUC). It provides a hospital-level breakdown of the mean AUC and 95% CI for the local and federated MLP models. The table also includes the mean <i>Δ</i>AUC and its confidence interval, allowing for an assessment of the performance gain achieved by the federated neural network.</p> <p>(XLSX)</p>2025-11-24T18:35:36ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pcbi.1013695.s003https://figshare.com/articles/dataset/Raw_performance_metrics_for_the_MLP_model_/30697794CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306977942025-11-24T18:35:36Z
spellingShingle Raw performance metrics for the MLP model.
Roberta Moreira Wichmann (14259316)
Cell Biology
Ecology
Cancer
Science Policy
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
via parameter aggregation
using ensemble aggregation
strong inverse correlation
maximum performance degradation
benefits requires caution
beneficial collaborative effect
>&# 916 ;</
19 mortality using
19 mortality prediction
local patient volume
statistically certain benefits
statistical significance showed
0273 ]) due
auc crossed zero
study validates fl
fl models demonstrated
performance gain (<
evaluated federated learning
div >< p
collaborative model ’
auc minus auc
local data scarcity
ci [– 0
gain ’
federated learning
local validation
universally certain
statistical advantage
6307 ])
auc across
– 0
volatile algorithm
smallest hospital
particularly evident
network (<
multicentric sample
multicenter sample
limited institutions
layer perceptron
iid ).
high sensitivity
findings underscore
every site
enabling mechanism
despite achieving
confidence intervals
500 ).
022 patients
status_str publishedVersion
title Raw performance metrics for the MLP model.
title_full Raw performance metrics for the MLP model.
title_fullStr Raw performance metrics for the MLP model.
title_full_unstemmed Raw performance metrics for the MLP model.
title_short Raw performance metrics for the MLP model.
title_sort Raw performance metrics for the MLP model.
topic Cell Biology
Ecology
Cancer
Science Policy
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Information Systems not elsewhere classified
via parameter aggregation
using ensemble aggregation
strong inverse correlation
maximum performance degradation
benefits requires caution
beneficial collaborative effect
>&# 916 ;</
19 mortality using
19 mortality prediction
local patient volume
statistically certain benefits
statistical significance showed
0273 ]) due
auc crossed zero
study validates fl
fl models demonstrated
performance gain (<
evaluated federated learning
div >< p
collaborative model ’
auc minus auc
local data scarcity
ci [– 0
gain ’
federated learning
local validation
universally certain
statistical advantage
6307 ])
auc across
– 0
volatile algorithm
smallest hospital
particularly evident
network (<
multicentric sample
multicenter sample
limited institutions
layer perceptron
iid ).
high sensitivity
findings underscore
every site
enabling mechanism
despite achieving
confidence intervals
500 ).
022 patients