Ms.FPOP: A Fast Exact Segmentation Algorithm with a Multiscale Penalty

<p>Given a time series in <math><mrow><mrow><mi>R</mi></mrow><mi>n</mi></mrow></math> with a piecewise constant mean and independent noises, we propose an exact dynamic programming algorithm for minimizing a least-squares criterion wi...

Full description

Saved in:
Bibliographic Details
Main Author: Arnaud Liehrmann (10970682) (author)
Other Authors: Guillem Rigaill (413775) (author)
Published: 2024
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852024962262499328
author Arnaud Liehrmann (10970682)
author2 Guillem Rigaill (413775)
author2_role author
author_facet Arnaud Liehrmann (10970682)
Guillem Rigaill (413775)
author_role author
dc.creator.none.fl_str_mv Arnaud Liehrmann (10970682)
Guillem Rigaill (413775)
dc.date.none.fl_str_mv 2024-11-22T21:20:15Z
dc.identifier.none.fl_str_mv 10.6084/m9.figshare.27629156.v2
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Ms_FPOP_a_fast_exact_segmentation_algorithm_with_a_multiscale_penalty/27629156
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Microbiology
Cell Biology
Neuroscience
Biotechnology
Immunology
Developmental Biology
Cancer
Infectious Diseases
Computational Biology
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Changepoint detection
Discrete optimization
Dynamic programming
Functional pruning
Maximum likelihood inference
Multiscale penalty
dc.title.none.fl_str_mv Ms.FPOP: A Fast Exact Segmentation Algorithm with a Multiscale Penalty
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Given a time series in <math><mrow><mrow><mi>R</mi></mrow><mi>n</mi></mrow></math> with a piecewise constant mean and independent noises, we propose an exact dynamic programming algorithm for minimizing a least-squares criterion with a multiscale penalty, favoring well-spread changepoints. This penalty was proposed by Verzelen et al. and achieves optimal rates for changepoint detection and changepoint localization in a non-asymptotic scenario. Our proposed algorithm, Multiscale Functional Pruning Optimal Partitioning (Ms.FPOP), extends functional pruning ideas presented in Rigaill and Maidstone et al. to multiscale penalties. For large signals (<math><mrow><mi>n</mi><mo>≥</mo><mrow><mrow><mn>10</mn></mrow></mrow><mn>5</mn></mrow></math>) with sparse changepoints, Ms.FPOP is shown empirically to be quasi-linear and faster than the Pruned Exact Linear Time (PELT) method of Killick et al. applied to the multiscale penalty of Verzelen et al. which exhibits quadratic slowdown in these cases. We propose an efficient implementation of Ms.FPOP coded in C++ interfaced with R that can segment profiles of up to <math><mrow><mi>n</mi><mo>=</mo><mrow><mrow><mn>10</mn></mrow></mrow><mn>6</mn></mrow></math> in a matter of seconds. Our algorithm works for slightly more general multiscale penalties. In particular, it allows a minimum segment length to be imposed. Using simple simulations we then show that where profiles are sufficiently large (<math><mrow><mi>n</mi><mo>≥</mo><mrow><mrow><mn>10</mn></mrow></mrow><mn>4</mn></mrow></math>), Ms.FPOP using the multiscale penalty of Verzelen et al. is typically more powerful than optimizing a least-squares criterion with the BIC penalty of Yao, a criterion that was shown by Fearnhead and Rigaill to perfom well across a wide range of scenarios. Supplementary materials for this article are available online.</p>
eu_rights_str_mv openAccess
id Manara_e00aee5eae562c26526eda39b773fe87
identifier_str_mv 10.6084/m9.figshare.27629156.v2
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27629156
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Ms.FPOP: A Fast Exact Segmentation Algorithm with a Multiscale PenaltyArnaud Liehrmann (10970682)Guillem Rigaill (413775)BiochemistryMicrobiologyCell BiologyNeuroscienceBiotechnologyImmunologyDevelopmental BiologyCancerInfectious DiseasesComputational BiologyMathematical Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedChangepoint detectionDiscrete optimizationDynamic programmingFunctional pruningMaximum likelihood inferenceMultiscale penalty<p>Given a time series in <math><mrow><mrow><mi>R</mi></mrow><mi>n</mi></mrow></math> with a piecewise constant mean and independent noises, we propose an exact dynamic programming algorithm for minimizing a least-squares criterion with a multiscale penalty, favoring well-spread changepoints. This penalty was proposed by Verzelen et al. and achieves optimal rates for changepoint detection and changepoint localization in a non-asymptotic scenario. Our proposed algorithm, Multiscale Functional Pruning Optimal Partitioning (Ms.FPOP), extends functional pruning ideas presented in Rigaill and Maidstone et al. to multiscale penalties. For large signals (<math><mrow><mi>n</mi><mo>≥</mo><mrow><mrow><mn>10</mn></mrow></mrow><mn>5</mn></mrow></math>) with sparse changepoints, Ms.FPOP is shown empirically to be quasi-linear and faster than the Pruned Exact Linear Time (PELT) method of Killick et al. applied to the multiscale penalty of Verzelen et al. which exhibits quadratic slowdown in these cases. We propose an efficient implementation of Ms.FPOP coded in C++ interfaced with R that can segment profiles of up to <math><mrow><mi>n</mi><mo>=</mo><mrow><mrow><mn>10</mn></mrow></mrow><mn>6</mn></mrow></math> in a matter of seconds. Our algorithm works for slightly more general multiscale penalties. In particular, it allows a minimum segment length to be imposed. Using simple simulations we then show that where profiles are sufficiently large (<math><mrow><mi>n</mi><mo>≥</mo><mrow><mrow><mn>10</mn></mrow></mrow><mn>4</mn></mrow></math>), Ms.FPOP using the multiscale penalty of Verzelen et al. is typically more powerful than optimizing a least-squares criterion with the BIC penalty of Yao, a criterion that was shown by Fearnhead and Rigaill to perfom well across a wide range of scenarios. Supplementary materials for this article are available online.</p>2024-11-22T21:20:15ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.6084/m9.figshare.27629156.v2https://figshare.com/articles/dataset/Ms_FPOP_a_fast_exact_segmentation_algorithm_with_a_multiscale_penalty/27629156CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/276291562024-11-22T21:20:15Z
spellingShingle Ms.FPOP: A Fast Exact Segmentation Algorithm with a Multiscale Penalty
Arnaud Liehrmann (10970682)
Biochemistry
Microbiology
Cell Biology
Neuroscience
Biotechnology
Immunology
Developmental Biology
Cancer
Infectious Diseases
Computational Biology
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Changepoint detection
Discrete optimization
Dynamic programming
Functional pruning
Maximum likelihood inference
Multiscale penalty
status_str publishedVersion
title Ms.FPOP: A Fast Exact Segmentation Algorithm with a Multiscale Penalty
title_full Ms.FPOP: A Fast Exact Segmentation Algorithm with a Multiscale Penalty
title_fullStr Ms.FPOP: A Fast Exact Segmentation Algorithm with a Multiscale Penalty
title_full_unstemmed Ms.FPOP: A Fast Exact Segmentation Algorithm with a Multiscale Penalty
title_short Ms.FPOP: A Fast Exact Segmentation Algorithm with a Multiscale Penalty
title_sort Ms.FPOP: A Fast Exact Segmentation Algorithm with a Multiscale Penalty
topic Biochemistry
Microbiology
Cell Biology
Neuroscience
Biotechnology
Immunology
Developmental Biology
Cancer
Infectious Diseases
Computational Biology
Mathematical Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
Changepoint detection
Discrete optimization
Dynamic programming
Functional pruning
Maximum likelihood inference
Multiscale penalty