High-Entropy Ceramic Aerogel with Ultrahigh Thermomechanical Properties

Materials for extreme-condition thermal insulation need to simultaneously withstand complex thermomechanical stresses while retaining their insulating properties at high temperatures. Ceramic aerogels are attractive candidates, but conventional low-entropy ceramics usually suffer from formidable gra...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Duola Wang (20874151) (author)
مؤلفون آخرون: Chuanyun Song (20874154) (author), Shixuan Dang (20874157) (author), Jingran Guo (16556560) (author), Hongxuan Yu (20786138) (author), Han Zhao (130768) (author), Yingde Zhao (20874160) (author), Jiali Chen (5696) (author), Xiang Xu (141229) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:Materials for extreme-condition thermal insulation need to simultaneously withstand complex thermomechanical stresses while retaining their insulating properties at high temperatures. Ceramic aerogels are attractive candidates, but conventional low-entropy ceramics usually suffer from formidable grain growth with severe volume shrinkage and strength degradation, resulting in catastrophic failures. Herein, a high-entropy (La<sub>1/4</sub>Sm<sub>1/4</sub>Gd<sub>1/4</sub>Y<sub>1/4</sub>)<sub>2</sub>Zr<sub>2</sub>O<sub>7</sub> (ZLSGY) aerogel is made through an element-phase design, realizing enhanced lattice distortion and sluggish diffusion effects to achieve fine-grain strengthening under extreme conditions. The resulting aerogel exhibits excellent mechanical flexibility, achieving compressive, tensile fracture, and bending strains of 98%, 52%, and 99%, respectively, as well as an ultralow thermal conductivity of 24.79 mW m<sup>–1</sup> K<sup>–1</sup> at 25 °C and 82.19 mW m<sup>–1</sup> K<sup>–1</sup> at 1000 °C. Moreover, the aerogel achieves exceptional thermomechanical stability with a working temperature of up to 1400 °C (less than 3% strength degradation after 10<sup>5</sup> high-temperature deformation cycles). This high-entropy ceramic aerogel presents a promising material system for thermal insulation in extreme environments.