Model structure of sparse/predictive coding (SPC).

<p>The first layer computes the prediction error between the input and reconstruction of the model, and then sends error signals to the second layer. The second layer takes input from the first layer and incorporates the response-regulating mechanism, . This two-layer network implements the dy...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Yanbo Lian (10219563) (author)
مؤلفون آخرون: Anthony N. Burkitt (6732233) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852019983696003072
author Yanbo Lian (10219563)
author2 Anthony N. Burkitt (6732233)
author2_role author
author_facet Yanbo Lian (10219563)
Anthony N. Burkitt (6732233)
author_role author
dc.creator.none.fl_str_mv Yanbo Lian (10219563)
Anthony N. Burkitt (6732233)
dc.date.none.fl_str_mv 2025-05-27T18:23:09Z
dc.identifier.none.fl_str_mv 10.1371/journal.pcbi.1013059.g002
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Model_structure_of_sparse_predictive_coding_SPC_/29160530
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Physiology
Science Policy
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
substantial experimental evidence
replicates different forms
primary visual cortex
learn simple cells
still poorly understood
implementing predictive coding
regulates neural responses
implements sparse coding
learning framework based
predictive coding
neural responses
sparse coding
sparse responses
predictive structure
neural circuits
well investigated
unified framework
study demonstrates
relating sparse
network structure
many parts
learning framework
integrate input
hebbian learning
framework incorporates
explicitly within
divisive normalization
described within
contrast saturation
biophysical properties
dc.title.none.fl_str_mv Model structure of sparse/predictive coding (SPC).
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The first layer computes the prediction error between the input and reconstruction of the model, and then sends error signals to the second layer. The second layer takes input from the first layer and incorporates the response-regulating mechanism, . This two-layer network implements the dynamics described in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013059#pcbi.1013059.e055" target="_blank">Eq 10</a>.</p>
eu_rights_str_mv openAccess
id Manara_e51250dd0ee5d45a6aeb8e2e997baa3a
identifier_str_mv 10.1371/journal.pcbi.1013059.g002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29160530
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Model structure of sparse/predictive coding (SPC).Yanbo Lian (10219563)Anthony N. Burkitt (6732233)PhysiologyScience PolicyBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedsubstantial experimental evidencereplicates different formsprimary visual cortexlearn simple cellsstill poorly understoodimplementing predictive codingregulates neural responsesimplements sparse codinglearning framework basedpredictive codingneural responsessparse codingsparse responsespredictive structureneural circuitswell investigatedunified frameworkstudy demonstratesrelating sparsenetwork structuremany partslearning frameworkintegrate inputhebbian learningframework incorporatesexplicitly withindivisive normalizationdescribed withincontrast saturationbiophysical properties<p>The first layer computes the prediction error between the input and reconstruction of the model, and then sends error signals to the second layer. The second layer takes input from the first layer and incorporates the response-regulating mechanism, . This two-layer network implements the dynamics described in <a href="http://www.ploscompbiol.org/article/info:doi/10.1371/journal.pcbi.1013059#pcbi.1013059.e055" target="_blank">Eq 10</a>.</p>2025-05-27T18:23:09ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pcbi.1013059.g002https://figshare.com/articles/figure/Model_structure_of_sparse_predictive_coding_SPC_/29160530CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/291605302025-05-27T18:23:09Z
spellingShingle Model structure of sparse/predictive coding (SPC).
Yanbo Lian (10219563)
Physiology
Science Policy
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
substantial experimental evidence
replicates different forms
primary visual cortex
learn simple cells
still poorly understood
implementing predictive coding
regulates neural responses
implements sparse coding
learning framework based
predictive coding
neural responses
sparse coding
sparse responses
predictive structure
neural circuits
well investigated
unified framework
study demonstrates
relating sparse
network structure
many parts
learning framework
integrate input
hebbian learning
framework incorporates
explicitly within
divisive normalization
described within
contrast saturation
biophysical properties
status_str publishedVersion
title Model structure of sparse/predictive coding (SPC).
title_full Model structure of sparse/predictive coding (SPC).
title_fullStr Model structure of sparse/predictive coding (SPC).
title_full_unstemmed Model structure of sparse/predictive coding (SPC).
title_short Model structure of sparse/predictive coding (SPC).
title_sort Model structure of sparse/predictive coding (SPC).
topic Physiology
Science Policy
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
substantial experimental evidence
replicates different forms
primary visual cortex
learn simple cells
still poorly understood
implementing predictive coding
regulates neural responses
implements sparse coding
learning framework based
predictive coding
neural responses
sparse coding
sparse responses
predictive structure
neural circuits
well investigated
unified framework
study demonstrates
relating sparse
network structure
many parts
learning framework
integrate input
hebbian learning
framework incorporates
explicitly within
divisive normalization
described within
contrast saturation
biophysical properties