_version_ 1852022175143297024
author Xini Fang (20861990)
author_facet Xini Fang (20861990)
author_role author
dc.creator.none.fl_str_mv Xini Fang (20861990)
dc.date.none.fl_str_mv 2025-03-11T17:41:54Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0318491.g001
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Corporate_operational_risk_early_warning_indicator_system_/28577135
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biotechnology
Immunology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
provides basic information
experimental results show
early warning strategies
operational risk theory
human resource risk
enterprise risk assessment
model &# 8217
45 %, 5
45 %, 4
09 %, 4
processing sample data
handle complex data
corporate operational risk
traditional rf model
improved rf model
fcm clustering algorithm
clustering algorithm
rf algorithm
risk indicators
market risk
financial risk
development risk
model achieves
95 %,
81 %,
29 %,
26 %,
20 %,
rating data
performance data
fcm clustering
data classification
corporate bonds
xlink ">
weight method
thereby enhancing
response speed
respectively 6
random forest
primary indicators
net value
intercriteria correlation
income products
fuzzy c
f1 score
48 %.
dc.title.none.fl_str_mv Corporate operational risk early warning indicator system.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Corporate operational risk early warning indicator system.</p>
eu_rights_str_mv openAccess
id Manara_e569dafa7686df388d28334c55d77458
identifier_str_mv 10.1371/journal.pone.0318491.g001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28577135
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Corporate operational risk early warning indicator system.Xini Fang (20861990)BiotechnologyImmunologyEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedprovides basic informationexperimental results showearly warning strategiesoperational risk theoryhuman resource riskenterprise risk assessmentmodel &# 821745 %, 545 %, 409 %, 4processing sample datahandle complex datacorporate operational risktraditional rf modelimproved rf modelfcm clustering algorithmclustering algorithmrf algorithmrisk indicatorsmarket riskfinancial riskdevelopment riskmodel achieves95 %,81 %,29 %,26 %,20 %,rating dataperformance datafcm clusteringdata classificationcorporate bondsxlink ">weight methodthereby enhancingresponse speedrespectively 6random forestprimary indicatorsnet valueintercriteria correlationincome productsfuzzy cf1 score48 %.<p>Corporate operational risk early warning indicator system.</p>2025-03-11T17:41:54ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0318491.g001https://figshare.com/articles/figure/Corporate_operational_risk_early_warning_indicator_system_/28577135CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/285771352025-03-11T17:41:54Z
spellingShingle Corporate operational risk early warning indicator system.
Xini Fang (20861990)
Biotechnology
Immunology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
provides basic information
experimental results show
early warning strategies
operational risk theory
human resource risk
enterprise risk assessment
model &# 8217
45 %, 5
45 %, 4
09 %, 4
processing sample data
handle complex data
corporate operational risk
traditional rf model
improved rf model
fcm clustering algorithm
clustering algorithm
rf algorithm
risk indicators
market risk
financial risk
development risk
model achieves
95 %,
81 %,
29 %,
26 %,
20 %,
rating data
performance data
fcm clustering
data classification
corporate bonds
xlink ">
weight method
thereby enhancing
response speed
respectively 6
random forest
primary indicators
net value
intercriteria correlation
income products
fuzzy c
f1 score
48 %.
status_str publishedVersion
title Corporate operational risk early warning indicator system.
title_full Corporate operational risk early warning indicator system.
title_fullStr Corporate operational risk early warning indicator system.
title_full_unstemmed Corporate operational risk early warning indicator system.
title_short Corporate operational risk early warning indicator system.
title_sort Corporate operational risk early warning indicator system.
topic Biotechnology
Immunology
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
provides basic information
experimental results show
early warning strategies
operational risk theory
human resource risk
enterprise risk assessment
model &# 8217
45 %, 5
45 %, 4
09 %, 4
processing sample data
handle complex data
corporate operational risk
traditional rf model
improved rf model
fcm clustering algorithm
clustering algorithm
rf algorithm
risk indicators
market risk
financial risk
development risk
model achieves
95 %,
81 %,
29 %,
26 %,
20 %,
rating data
performance data
fcm clustering
data classification
corporate bonds
xlink ">
weight method
thereby enhancing
response speed
respectively 6
random forest
primary indicators
net value
intercriteria correlation
income products
fuzzy c
f1 score
48 %.