Comparison of feature-based and Uniform Manifold Approximation and Projection (UMAP)-based spike sorting for neuron classification.

<p><b>(A)</b> High-pass filtering (500 Hz–2 kHz) removes low-frequency noise from extracellular signals. <b>(B)</b> Thresholding the pronounced deflections in the filtered data identifies spikes. <b>(C)</b> Windows around each spike, centered on the trough,...

Deskribapen osoa

Gorde:
Xehetasun bibliografikoak
Egile nagusia: Daniel Suárez-Barrera (22676654) (author)
Beste egile batzuk: Lucas Bayones (22676657) (author), Norberto Encinas-Rodríguez (22676660) (author), Sergio Parra (22676663) (author), Viktor Monroy (22676666) (author), Sebastián Pujalte (22676669) (author), Bernardo Andrade-Ortega (22676672) (author), Héctor Díaz (22676675) (author), Manuel Alvarez (3468647) (author), Antonio Zainos (22676678) (author), Alessio Franci (143351) (author), Román Rossi-Pool (22676681) (author)
Argitaratua: 2025
Gaiak:
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!
_version_ 1849927641762627584
author Daniel Suárez-Barrera (22676654)
author2 Lucas Bayones (22676657)
Norberto Encinas-Rodríguez (22676660)
Sergio Parra (22676663)
Viktor Monroy (22676666)
Sebastián Pujalte (22676669)
Bernardo Andrade-Ortega (22676672)
Héctor Díaz (22676675)
Manuel Alvarez (3468647)
Antonio Zainos (22676678)
Alessio Franci (143351)
Román Rossi-Pool (22676681)
author2_role author
author
author
author
author
author
author
author
author
author
author
author_facet Daniel Suárez-Barrera (22676654)
Lucas Bayones (22676657)
Norberto Encinas-Rodríguez (22676660)
Sergio Parra (22676663)
Viktor Monroy (22676666)
Sebastián Pujalte (22676669)
Bernardo Andrade-Ortega (22676672)
Héctor Díaz (22676675)
Manuel Alvarez (3468647)
Antonio Zainos (22676678)
Alessio Franci (143351)
Román Rossi-Pool (22676681)
author_role author
dc.creator.none.fl_str_mv Daniel Suárez-Barrera (22676654)
Lucas Bayones (22676657)
Norberto Encinas-Rodríguez (22676660)
Sergio Parra (22676663)
Viktor Monroy (22676666)
Sebastián Pujalte (22676669)
Bernardo Andrade-Ortega (22676672)
Héctor Díaz (22676675)
Manuel Alvarez (3468647)
Antonio Zainos (22676678)
Alessio Franci (143351)
Román Rossi-Pool (22676681)
dc.date.none.fl_str_mv 2025-11-24T18:33:31Z
dc.identifier.none.fl_str_mv 10.1371/journal.pbio.3003527.g001
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Comparison_of_feature-based_and_Uniform_Manifold_Approximation_and_Projection_UMAP_-based_spike_sorting_for_neuron_classification_/30697577
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Molecular Biology
Neuroscience
Physiology
Biotechnology
Developmental Biology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
spike sorting pipelines
spike sorting pipeline
seldom spiking neurons
recorded putative neurons
correctly sorted neurons
clustering algorithms responsible
spike sorting makes
reliable spike sorting
umap drastically increases
data analysis techniques
drastically improve
processed data
experimental data
universal practice
precise explorations
neural recordings
neural code
mathematically grounded
fundamentally motivated
extracellular electrophysiology
enables deeper
crucial step
computational cost
ad hoc
dc.title.none.fl_str_mv Comparison of feature-based and Uniform Manifold Approximation and Projection (UMAP)-based spike sorting for neuron classification.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p><b>(A)</b> High-pass filtering (500 Hz–2 kHz) removes low-frequency noise from extracellular signals. <b>(B)</b> Thresholding the pronounced deflections in the filtered data identifies spikes. <b>(C)</b> Windows around each spike, centered on the trough, are isolated to standardize waveform comparisons. <b>(D)</b> Each spike waveform becomes a point in a high-dimensional space (time vs. voltage). <b>(E)</b> Feature-based sorting relies on linear dimensionality reduction methods (e.g., principal component analysis, wavelets), yet can be thrown off by spikes from different neurons. <b>(F)</b> Clustering in this simplified feature space may misclassify neurons due to these linear constraints. <b>(G)</b> UMAP-based sorting, however, employs a nonlinear approach that preserves both local and global structure. <b>(H)</b> This UMAP projection keeps distinct clusters and neuron-specific features more intact. <b>(I)</b> Clustering in the UMAP-projected space better distinguishes individual neurons (shown as distinct colored clusters), reducing merging errors seen with feature-based methods.</p>
eu_rights_str_mv openAccess
id Manara_e6f405969393baa4edb7b3922e8a767b
identifier_str_mv 10.1371/journal.pbio.3003527.g001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30697577
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Comparison of feature-based and Uniform Manifold Approximation and Projection (UMAP)-based spike sorting for neuron classification.Daniel Suárez-Barrera (22676654)Lucas Bayones (22676657)Norberto Encinas-Rodríguez (22676660)Sergio Parra (22676663)Viktor Monroy (22676666)Sebastián Pujalte (22676669)Bernardo Andrade-Ortega (22676672)Héctor Díaz (22676675)Manuel Alvarez (3468647)Antonio Zainos (22676678)Alessio Franci (143351)Román Rossi-Pool (22676681)Cell BiologyMolecular BiologyNeurosciencePhysiologyBiotechnologyDevelopmental BiologyScience PolicySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedspike sorting pipelinesspike sorting pipelineseldom spiking neuronsrecorded putative neuronscorrectly sorted neuronsclustering algorithms responsiblespike sorting makesreliable spike sortingumap drastically increasesdata analysis techniquesdrastically improveprocessed dataexperimental datauniversal practiceprecise explorationsneural recordingsneural codemathematically groundedfundamentally motivatedextracellular electrophysiologyenables deepercrucial stepcomputational costad hoc<p><b>(A)</b> High-pass filtering (500 Hz–2 kHz) removes low-frequency noise from extracellular signals. <b>(B)</b> Thresholding the pronounced deflections in the filtered data identifies spikes. <b>(C)</b> Windows around each spike, centered on the trough, are isolated to standardize waveform comparisons. <b>(D)</b> Each spike waveform becomes a point in a high-dimensional space (time vs. voltage). <b>(E)</b> Feature-based sorting relies on linear dimensionality reduction methods (e.g., principal component analysis, wavelets), yet can be thrown off by spikes from different neurons. <b>(F)</b> Clustering in this simplified feature space may misclassify neurons due to these linear constraints. <b>(G)</b> UMAP-based sorting, however, employs a nonlinear approach that preserves both local and global structure. <b>(H)</b> This UMAP projection keeps distinct clusters and neuron-specific features more intact. <b>(I)</b> Clustering in the UMAP-projected space better distinguishes individual neurons (shown as distinct colored clusters), reducing merging errors seen with feature-based methods.</p>2025-11-24T18:33:31ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pbio.3003527.g001https://figshare.com/articles/figure/Comparison_of_feature-based_and_Uniform_Manifold_Approximation_and_Projection_UMAP_-based_spike_sorting_for_neuron_classification_/30697577CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306975772025-11-24T18:33:31Z
spellingShingle Comparison of feature-based and Uniform Manifold Approximation and Projection (UMAP)-based spike sorting for neuron classification.
Daniel Suárez-Barrera (22676654)
Cell Biology
Molecular Biology
Neuroscience
Physiology
Biotechnology
Developmental Biology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
spike sorting pipelines
spike sorting pipeline
seldom spiking neurons
recorded putative neurons
correctly sorted neurons
clustering algorithms responsible
spike sorting makes
reliable spike sorting
umap drastically increases
data analysis techniques
drastically improve
processed data
experimental data
universal practice
precise explorations
neural recordings
neural code
mathematically grounded
fundamentally motivated
extracellular electrophysiology
enables deeper
crucial step
computational cost
ad hoc
status_str publishedVersion
title Comparison of feature-based and Uniform Manifold Approximation and Projection (UMAP)-based spike sorting for neuron classification.
title_full Comparison of feature-based and Uniform Manifold Approximation and Projection (UMAP)-based spike sorting for neuron classification.
title_fullStr Comparison of feature-based and Uniform Manifold Approximation and Projection (UMAP)-based spike sorting for neuron classification.
title_full_unstemmed Comparison of feature-based and Uniform Manifold Approximation and Projection (UMAP)-based spike sorting for neuron classification.
title_short Comparison of feature-based and Uniform Manifold Approximation and Projection (UMAP)-based spike sorting for neuron classification.
title_sort Comparison of feature-based and Uniform Manifold Approximation and Projection (UMAP)-based spike sorting for neuron classification.
topic Cell Biology
Molecular Biology
Neuroscience
Physiology
Biotechnology
Developmental Biology
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
spike sorting pipelines
spike sorting pipeline
seldom spiking neurons
recorded putative neurons
correctly sorted neurons
clustering algorithms responsible
spike sorting makes
reliable spike sorting
umap drastically increases
data analysis techniques
drastically improve
processed data
experimental data
universal practice
precise explorations
neural recordings
neural code
mathematically grounded
fundamentally motivated
extracellular electrophysiology
enables deeper
crucial step
computational cost
ad hoc