_version_ 1852015982953889792
author Ali Abbas Abbod (22386097)
author2 Matheel E. Abdulmunim (22386100)
Ismail A. Mageed (22052111)
author2_role author
author
author_facet Ali Abbas Abbod (22386097)
Matheel E. Abdulmunim (22386100)
Ismail A. Mageed (22052111)
author_role author
dc.creator.none.fl_str_mv Ali Abbas Abbod (22386097)
Matheel E. Abdulmunim (22386100)
Ismail A. Mageed (22052111)
dc.date.none.fl_str_mv 2025-10-07T17:28:39Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0333374.g005
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/The_Flowchart_of_the_Hybrid_GWO-BBOA_Optimization_Process_/30297799
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
time surveillance systems
grey wolf optimization
global search capability
experimental results show
enhancing dl models
effective hyperparameter optimization
demonstrated strong potential
bboa optimization algorithm
182 annotated images
time object detection
hybrid metaheuristic approaches
model &# 8217
hybrid gwo
arson detection
work highlights
tuning strength
study proposes
risk environments
required iterations
recent advances
public areas
protecting lives
proposed gwo
optimizing hyperparameters
industrial zones
highly dependent
future work
evaluated using
enhanced ability
deep learning
critical role
computational efficiency
dc.title.none.fl_str_mv The Flowchart of the Hybrid GWO-BBOA Optimization Process.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The Flowchart of the Hybrid GWO-BBOA Optimization Process.</p>
eu_rights_str_mv openAccess
id Manara_ea2600a3a96dafa1aedb4d1fedc34ded
identifier_str_mv 10.1371/journal.pone.0333374.g005
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30297799
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling The Flowchart of the Hybrid GWO-BBOA Optimization Process.Ali Abbas Abbod (22386097)Matheel E. Abdulmunim (22386100)Ismail A. Mageed (22052111)Space ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedtime surveillance systemsgrey wolf optimizationglobal search capabilityexperimental results showenhancing dl modelseffective hyperparameter optimizationdemonstrated strong potentialbboa optimization algorithm182 annotated imagestime object detectionhybrid metaheuristic approachesmodel &# 8217hybrid gwoarson detectionwork highlightstuning strengthstudy proposesrisk environmentsrequired iterationsrecent advancespublic areasprotecting livesproposed gwooptimizing hyperparametersindustrial zoneshighly dependentfuture workevaluated usingenhanced abilitydeep learningcritical rolecomputational efficiency<p>The Flowchart of the Hybrid GWO-BBOA Optimization Process.</p>2025-10-07T17:28:39ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0333374.g005https://figshare.com/articles/figure/The_Flowchart_of_the_Hybrid_GWO-BBOA_Optimization_Process_/30297799CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/302977992025-10-07T17:28:39Z
spellingShingle The Flowchart of the Hybrid GWO-BBOA Optimization Process.
Ali Abbas Abbod (22386097)
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
time surveillance systems
grey wolf optimization
global search capability
experimental results show
enhancing dl models
effective hyperparameter optimization
demonstrated strong potential
bboa optimization algorithm
182 annotated images
time object detection
hybrid metaheuristic approaches
model &# 8217
hybrid gwo
arson detection
work highlights
tuning strength
study proposes
risk environments
required iterations
recent advances
public areas
protecting lives
proposed gwo
optimizing hyperparameters
industrial zones
highly dependent
future work
evaluated using
enhanced ability
deep learning
critical role
computational efficiency
status_str publishedVersion
title The Flowchart of the Hybrid GWO-BBOA Optimization Process.
title_full The Flowchart of the Hybrid GWO-BBOA Optimization Process.
title_fullStr The Flowchart of the Hybrid GWO-BBOA Optimization Process.
title_full_unstemmed The Flowchart of the Hybrid GWO-BBOA Optimization Process.
title_short The Flowchart of the Hybrid GWO-BBOA Optimization Process.
title_sort The Flowchart of the Hybrid GWO-BBOA Optimization Process.
topic Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
time surveillance systems
grey wolf optimization
global search capability
experimental results show
enhancing dl models
effective hyperparameter optimization
demonstrated strong potential
bboa optimization algorithm
182 annotated images
time object detection
hybrid metaheuristic approaches
model &# 8217
hybrid gwo
arson detection
work highlights
tuning strength
study proposes
risk environments
required iterations
recent advances
public areas
protecting lives
proposed gwo
optimizing hyperparameters
industrial zones
highly dependent
future work
evaluated using
enhanced ability
deep learning
critical role
computational efficiency