Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).

<p>Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Yazhen Zhu (3595430) (author)
مؤلفون آخرون: Qing Song (77132) (author), Meng Li (79487) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852019750747504640
author Yazhen Zhu (3595430)
author2 Qing Song (77132)
Meng Li (79487)
author2_role author
author
author_facet Yazhen Zhu (3595430)
Qing Song (77132)
Meng Li (79487)
author_role author
dc.creator.none.fl_str_mv Yazhen Zhu (3595430)
Qing Song (77132)
Meng Li (79487)
dc.date.none.fl_str_mv 2025-06-02T18:18:18Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0321616.t007
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Task_sequences_for_each_AGV_when_using_greedy_algorithm_in_the_front_end_of_IPSO_B_/29217565
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Ecology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> research
material delivery tasks
low agv utilization
extensive simulation experiments
enhancing agv utilization
population genetic algorithm
task allocation algorithms
guide multiple agvs
real factory environment
task allocation
factory environments
proposed algorithm
subsequently enhanced
slightly higher
significantly lower
running time
overall performance
load distances
key topic
intelligent manufacturing
conducted based
balance fairness
also optimizing
dc.title.none.fl_str_mv Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).</p>
eu_rights_str_mv openAccess
id Manara_ea2d9e3370699a057f2bc0dc8bd3c607
identifier_str_mv 10.1371/journal.pone.0321616.t007
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29217565
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).Yazhen Zhu (3595430)Qing Song (77132)Meng Li (79487)EcologySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedxlink "> researchmaterial delivery taskslow agv utilizationextensive simulation experimentsenhancing agv utilizationpopulation genetic algorithmtask allocation algorithmsguide multiple agvsreal factory environmenttask allocationfactory environmentsproposed algorithmsubsequently enhancedslightly highersignificantly lowerrunning timeoverall performanceload distanceskey topicintelligent manufacturingconducted basedbalance fairnessalso optimizing<p>Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).</p>2025-06-02T18:18:18ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0321616.t007https://figshare.com/articles/dataset/Task_sequences_for_each_AGV_when_using_greedy_algorithm_in_the_front_end_of_IPSO_B_/29217565CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292175652025-06-02T18:18:18Z
spellingShingle Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).
Yazhen Zhu (3595430)
Ecology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> research
material delivery tasks
low agv utilization
extensive simulation experiments
enhancing agv utilization
population genetic algorithm
task allocation algorithms
guide multiple agvs
real factory environment
task allocation
factory environments
proposed algorithm
subsequently enhanced
slightly higher
significantly lower
running time
overall performance
load distances
key topic
intelligent manufacturing
conducted based
balance fairness
also optimizing
status_str publishedVersion
title Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).
title_full Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).
title_fullStr Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).
title_full_unstemmed Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).
title_short Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).
title_sort Task sequences for each AGV when using greedy algorithm in the front end of IPSO(+B).
topic Ecology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> research
material delivery tasks
low agv utilization
extensive simulation experiments
enhancing agv utilization
population genetic algorithm
task allocation algorithms
guide multiple agvs
real factory environment
task allocation
factory environments
proposed algorithm
subsequently enhanced
slightly higher
significantly lower
running time
overall performance
load distances
key topic
intelligent manufacturing
conducted based
balance fairness
also optimizing