Feature selection, Random Forest, and SEM workflow for simulated stand dataset

<p dir="ltr">This dataset and R script provide the workflow for analyzing stand structure and productivity of Chinese fir (<i>Cunninghamia lanceolata</i>) stands using simulated data. The dataset includes key stand, site, and climate variables. The R script demonstrates t...

Full description

Saved in:
Bibliographic Details
Main Author: yang guo (22176595) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852015454863753216
author yang guo (22176595)
author_facet yang guo (22176595)
author_role author
dc.creator.none.fl_str_mv yang guo (22176595)
dc.date.none.fl_str_mv 2025-10-28T10:44:18Z
dc.identifier.none.fl_str_mv 10.6084/m9.figshare.30189961.v1
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Feature_selection_Random_Forest_and_SEM_workflow_for_simulated_stand_dataset/30189961
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Forestry management and environment
Random Forest, SEM, Feature Selection
dc.title.none.fl_str_mv Feature selection, Random Forest, and SEM workflow for simulated stand dataset
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p dir="ltr">This dataset and R script provide the workflow for analyzing stand structure and productivity of Chinese fir (<i>Cunninghamia lanceolata</i>) stands using simulated data. The dataset includes key stand, site, and climate variables. The R script demonstrates the following steps:</p><ol><li>Feature selection with the Boruta algorithm</li><li>Random Forest modeling with cross-validation and stepwise variable elimination</li><li>Multicollinearity diagnostics using VIF</li><li>Structural Equation Modeling (SEM) and effect decomposition with <code>piecewiseSEM</code> and <code>semEff</code><b>Notes</b></li><li>The dataset is simulated for reproducibility and does not include raw inventory data.</li><li>Users may adapt the script to their own datasets for similar analyses in forestry and ecology.</li></ol><p></p>
eu_rights_str_mv openAccess
id Manara_ebd2d4084ddf05ab2ac83addde375d38
identifier_str_mv 10.6084/m9.figshare.30189961.v1
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30189961
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Feature selection, Random Forest, and SEM workflow for simulated stand datasetyang guo (22176595)Forestry management and environmentRandom Forest, SEM, Feature Selection<p dir="ltr">This dataset and R script provide the workflow for analyzing stand structure and productivity of Chinese fir (<i>Cunninghamia lanceolata</i>) stands using simulated data. The dataset includes key stand, site, and climate variables. The R script demonstrates the following steps:</p><ol><li>Feature selection with the Boruta algorithm</li><li>Random Forest modeling with cross-validation and stepwise variable elimination</li><li>Multicollinearity diagnostics using VIF</li><li>Structural Equation Modeling (SEM) and effect decomposition with <code>piecewiseSEM</code> and <code>semEff</code><b>Notes</b></li><li>The dataset is simulated for reproducibility and does not include raw inventory data.</li><li>Users may adapt the script to their own datasets for similar analyses in forestry and ecology.</li></ol><p></p>2025-10-28T10:44:18ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.6084/m9.figshare.30189961.v1https://figshare.com/articles/dataset/Feature_selection_Random_Forest_and_SEM_workflow_for_simulated_stand_dataset/30189961CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/301899612025-10-28T10:44:18Z
spellingShingle Feature selection, Random Forest, and SEM workflow for simulated stand dataset
yang guo (22176595)
Forestry management and environment
Random Forest, SEM, Feature Selection
status_str publishedVersion
title Feature selection, Random Forest, and SEM workflow for simulated stand dataset
title_full Feature selection, Random Forest, and SEM workflow for simulated stand dataset
title_fullStr Feature selection, Random Forest, and SEM workflow for simulated stand dataset
title_full_unstemmed Feature selection, Random Forest, and SEM workflow for simulated stand dataset
title_short Feature selection, Random Forest, and SEM workflow for simulated stand dataset
title_sort Feature selection, Random Forest, and SEM workflow for simulated stand dataset
topic Forestry management and environment
Random Forest, SEM, Feature Selection