Structure of attention mechanism block.
<div><p>Robotic grasping is crucial in manufacturing, logistics, and service robotics, but existing methods struggle with object occlusion and complex arrangements in cluttered scenes. We propose the Generative Residual Attention Network (GR-AttNet), based on the Generative Residual Conv...
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , , , |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| الملخص: | <div><p>Robotic grasping is crucial in manufacturing, logistics, and service robotics, but existing methods struggle with object occlusion and complex arrangements in cluttered scenes. We propose the Generative Residual Attention Network (GR-AttNet), based on the Generative Residual Convolutional Neural Network (GR-CNN). The spatial attention mechanism enhances its adaptability to clutter, and architectural optimization maintains high accuracy while reducing parameters and boosting efficiency. Experiments show GR-AttNet achieves 98.1% accuracy on the Cornell Grasping Dataset, 94.9% on the Jacquard Dataset, with processing speeds of 148 ms and 163 ms respectively, outperforming several state-of-the-art methods. With only 2.8 million parameters, it surpasses various existing models. Simulations further validate over 50% success rates across different scenario complexities. However, challenges remain in handling small object missed detection and severe occlusion cases. GR-AttNet offers a novel, highly practical solution for robotic grasping tasks.</p></div> |
|---|