A long-term reconstructed TROPOMI solar-induced fluorescence dataset using machine learning algorithms

<p dir="ltr">Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) can be a valuable proxy for photosynthesis. <a href="">TROPOspheric Monitoring Instrument (TROPOMI) </a></p><p dir="ltr">on the Copernicus Sentinel-5P mission ena...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Xingan Chen (11334186) (author)
مؤلفون آخرون: Yuefei Huang (1670143) (author), Chong Nie (12983851) (author), Shuo Zhang (12983845) (author), Guangqian Wang (12983854) (author), Shiliu Chen (11267333) (author), Zhichao Chen (12983857) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
الوصف
الملخص:<p dir="ltr">Satellite-retrieved solar-induced chlorophyll fluorescence (SIF) can be a valuable proxy for photosynthesis. <a href="">TROPOspheric Monitoring Instrument (TROPOMI) </a></p><p dir="ltr">on the Copernicus Sentinel-5P mission enables significant improvements in measuring SIF, but the short temporal coverage of the data records has limited its applications in long-term studies. This dataset uses machine learning to reconstruct TROPOMI SIF (RTSIF) for 2001-2020 with a spatial resolution of 0.05° and a temporal resolution of 8 days. Our machine learning model has high accuracy on the training and testing data (R</p><p><sup>2</sup></p><p dir="ltr"> = 0.907, regression slope = 1.001). The RTSIF dataset is in good agreement with the original TROPOMI SIF, and its accuracy is further validated against tower-based SIF. The RTSIF dataset is also compared with other satellite-derived SIF (GOME-2 SIF and OCO-2 SIF). Comparing RTSIF with Gross Primary Production (GPP) illustrates the potential of RTSIF for estimating carbon fluxes. We anticipate that this new dataset will be valuable in assessing long-term terrestrial photosynthesis and constraining the global carbon budget and associated water fluxes.</p>