Comparison of Recall Values for the Five Algorithms.

<p>Comparison of Recall Values for the Five Algorithms.</p>

Saved in:
Bibliographic Details
Main Author: Ming Gao (115719) (author)
Other Authors: Mengshi Li (21464625) (author), Zhi Ling (18928281) (author), Jinhao Zhong (21464628) (author), Han Ding (831540) (author), Qinghua Wu (79148) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852019755887624192
author Ming Gao (115719)
author2 Mengshi Li (21464625)
Zhi Ling (18928281)
Jinhao Zhong (21464628)
Han Ding (831540)
Qinghua Wu (79148)
author2_role author
author
author
author
author
author_facet Ming Gao (115719)
Mengshi Li (21464625)
Zhi Ling (18928281)
Jinhao Zhong (21464628)
Han Ding (831540)
Qinghua Wu (79148)
author_role author
dc.creator.none.fl_str_mv Ming Gao (115719)
Mengshi Li (21464625)
Zhi Ling (18928281)
Jinhao Zhong (21464628)
Han Ding (831540)
Qinghua Wu (79148)
dc.date.none.fl_str_mv 2025-06-02T18:08:16Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0319747.t013
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Comparison_of_Recall_Values_for_the_Five_Algorithms_/29216865
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Genetics
Science Policy
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> currently
two baseline algorithms
fully capture category
existing category labels
comprehensively extract category
cntc datasets indicate
calculating waveform similarity
baseline algorithms based
class feature vectors
wa demonstrates advantages
average precision improvement
74 %, respectively
71 %, 28
thuchnews dataset reveal
thuchnews dataset demonstrate
average term frequency
labeled text samples
handling text data
training speed compared
df improves precision
utilizes wavelet analysis
feature layer waveforms
average recall improvement
wavelet analysis
feature extraction
wa ),
document frequency
94 %,
65 %,
36 %,
analysis techniques
average f1
text classification
text categories
score improvement
typical features
trained models
thinking approach
specific features
promising potential
experimental results
effectively represent
df ),
classification performance
82 %.
dc.title.none.fl_str_mv Comparison of Recall Values for the Five Algorithms.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Comparison of Recall Values for the Five Algorithms.</p>
eu_rights_str_mv openAccess
id Manara_f14f61dccf896e9c0ae2be3be83066fa
identifier_str_mv 10.1371/journal.pone.0319747.t013
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29216865
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Comparison of Recall Values for the Five Algorithms.Ming Gao (115719)Mengshi Li (21464625)Zhi Ling (18928281)Jinhao Zhong (21464628)Han Ding (831540)Qinghua Wu (79148)GeneticsScience PolicySpace ScienceBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedxlink "> currentlytwo baseline algorithmsfully capture categoryexisting category labelscomprehensively extract categorycntc datasets indicatecalculating waveform similaritybaseline algorithms basedclass feature vectorswa demonstrates advantagesaverage precision improvement74 %, respectively71 %, 28thuchnews dataset revealthuchnews dataset demonstrateaverage term frequencylabeled text sampleshandling text datatraining speed compareddf improves precisionutilizes wavelet analysisfeature layer waveformsaverage recall improvementwavelet analysisfeature extractionwa ),document frequency94 %,65 %,36 %,analysis techniquesaverage f1text classificationtext categoriesscore improvementtypical featurestrained modelsthinking approachspecific featurespromising potentialexperimental resultseffectively representdf ),classification performance82 %.<p>Comparison of Recall Values for the Five Algorithms.</p>2025-06-02T18:08:16ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0319747.t013https://figshare.com/articles/dataset/Comparison_of_Recall_Values_for_the_Five_Algorithms_/29216865CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292168652025-06-02T18:08:16Z
spellingShingle Comparison of Recall Values for the Five Algorithms.
Ming Gao (115719)
Genetics
Science Policy
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> currently
two baseline algorithms
fully capture category
existing category labels
comprehensively extract category
cntc datasets indicate
calculating waveform similarity
baseline algorithms based
class feature vectors
wa demonstrates advantages
average precision improvement
74 %, respectively
71 %, 28
thuchnews dataset reveal
thuchnews dataset demonstrate
average term frequency
labeled text samples
handling text data
training speed compared
df improves precision
utilizes wavelet analysis
feature layer waveforms
average recall improvement
wavelet analysis
feature extraction
wa ),
document frequency
94 %,
65 %,
36 %,
analysis techniques
average f1
text classification
text categories
score improvement
typical features
trained models
thinking approach
specific features
promising potential
experimental results
effectively represent
df ),
classification performance
82 %.
status_str publishedVersion
title Comparison of Recall Values for the Five Algorithms.
title_full Comparison of Recall Values for the Five Algorithms.
title_fullStr Comparison of Recall Values for the Five Algorithms.
title_full_unstemmed Comparison of Recall Values for the Five Algorithms.
title_short Comparison of Recall Values for the Five Algorithms.
title_sort Comparison of Recall Values for the Five Algorithms.
topic Genetics
Science Policy
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> currently
two baseline algorithms
fully capture category
existing category labels
comprehensively extract category
cntc datasets indicate
calculating waveform similarity
baseline algorithms based
class feature vectors
wa demonstrates advantages
average precision improvement
74 %, respectively
71 %, 28
thuchnews dataset reveal
thuchnews dataset demonstrate
average term frequency
labeled text samples
handling text data
training speed compared
df improves precision
utilizes wavelet analysis
feature layer waveforms
average recall improvement
wavelet analysis
feature extraction
wa ),
document frequency
94 %,
65 %,
36 %,
analysis techniques
average f1
text classification
text categories
score improvement
typical features
trained models
thinking approach
specific features
promising potential
experimental results
effectively represent
df ),
classification performance
82 %.