Representative examples of incorrect predictions in the reverse polar transformed spectrograms.
<p>Afib: atrial fibrillation, Normal: normal sinus rhythm, Other: other rhythm, Noise: noisy signal.</p>
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| _version_ | 1852022210724626432 |
|---|---|
| author | Daehyun Kwon (11985629) |
| author2 | Hanbit Kang (14298410) Dongwoo Lee (1511272) Yoon-Chul Kim (16878966) |
| author2_role | author author author |
| author_facet | Daehyun Kwon (11985629) Hanbit Kang (14298410) Dongwoo Lee (1511272) Yoon-Chul Kim (16878966) |
| author_role | author |
| dc.creator.none.fl_str_mv | Daehyun Kwon (11985629) Hanbit Kang (14298410) Dongwoo Lee (1511272) Yoon-Chul Kim (16878966) |
| dc.date.none.fl_str_mv | 2025-03-10T17:40:59Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pone.0317630.g007 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/Representative_examples_of_incorrect_predictions_in_the_reverse_polar_transformed_spectrograms_/28568669 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Physiology Space Science Biological Sciences not elsewhere classified xlink "> portable time fourier transform reverse polar transformation polar transformed time detecting cardiac arrhythmias cinc challenge 2017 deep cnn models normal sinus rhythm based spectrogram generation predicting atrial fibrillation polar transformed spectrograms ecg signal visualization trained deep cnns monitoring heart rhythms atrial fibrillation deep learning rhythm characteristics heart conditions based prediction wearable electrocardiogram three pre results demonstrated physiological signals novel method intuitive representation increasingly utilized four classes existing methods ecg recordings ecg data confidently assess |
| dc.title.none.fl_str_mv | Representative examples of incorrect predictions in the reverse polar transformed spectrograms. |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p>Afib: atrial fibrillation, Normal: normal sinus rhythm, Other: other rhythm, Noise: noisy signal.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_f6ecc643bdf87fdf642116f13401b217 |
| identifier_str_mv | 10.1371/journal.pone.0317630.g007 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/28568669 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Representative examples of incorrect predictions in the reverse polar transformed spectrograms.Daehyun Kwon (11985629)Hanbit Kang (14298410)Dongwoo Lee (1511272)Yoon-Chul Kim (16878966)PhysiologySpace ScienceBiological Sciences not elsewhere classifiedxlink "> portabletime fourier transformreverse polar transformationpolar transformed timedetecting cardiac arrhythmiascinc challenge 2017deep cnn modelsnormal sinus rhythmbased spectrogram generationpredicting atrial fibrillationpolar transformed spectrogramsecg signal visualizationtrained deep cnnsmonitoring heart rhythmsatrial fibrillationdeep learningrhythm characteristicsheart conditionsbased predictionwearable electrocardiogramthree preresults demonstratedphysiological signalsnovel methodintuitive representationincreasingly utilizedfour classesexisting methodsecg recordingsecg dataconfidently assess<p>Afib: atrial fibrillation, Normal: normal sinus rhythm, Other: other rhythm, Noise: noisy signal.</p>2025-03-10T17:40:59ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0317630.g007https://figshare.com/articles/figure/Representative_examples_of_incorrect_predictions_in_the_reverse_polar_transformed_spectrograms_/28568669CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/285686692025-03-10T17:40:59Z |
| spellingShingle | Representative examples of incorrect predictions in the reverse polar transformed spectrograms. Daehyun Kwon (11985629) Physiology Space Science Biological Sciences not elsewhere classified xlink "> portable time fourier transform reverse polar transformation polar transformed time detecting cardiac arrhythmias cinc challenge 2017 deep cnn models normal sinus rhythm based spectrogram generation predicting atrial fibrillation polar transformed spectrograms ecg signal visualization trained deep cnns monitoring heart rhythms atrial fibrillation deep learning rhythm characteristics heart conditions based prediction wearable electrocardiogram three pre results demonstrated physiological signals novel method intuitive representation increasingly utilized four classes existing methods ecg recordings ecg data confidently assess |
| status_str | publishedVersion |
| title | Representative examples of incorrect predictions in the reverse polar transformed spectrograms. |
| title_full | Representative examples of incorrect predictions in the reverse polar transformed spectrograms. |
| title_fullStr | Representative examples of incorrect predictions in the reverse polar transformed spectrograms. |
| title_full_unstemmed | Representative examples of incorrect predictions in the reverse polar transformed spectrograms. |
| title_short | Representative examples of incorrect predictions in the reverse polar transformed spectrograms. |
| title_sort | Representative examples of incorrect predictions in the reverse polar transformed spectrograms. |
| topic | Physiology Space Science Biological Sciences not elsewhere classified xlink "> portable time fourier transform reverse polar transformation polar transformed time detecting cardiac arrhythmias cinc challenge 2017 deep cnn models normal sinus rhythm based spectrogram generation predicting atrial fibrillation polar transformed spectrograms ecg signal visualization trained deep cnns monitoring heart rhythms atrial fibrillation deep learning rhythm characteristics heart conditions based prediction wearable electrocardiogram three pre results demonstrated physiological signals novel method intuitive representation increasingly utilized four classes existing methods ecg recordings ecg data confidently assess |