Representative examples of incorrect predictions in the reverse polar transformed spectrograms.

<p>Afib: atrial fibrillation, Normal: normal sinus rhythm, Other: other rhythm, Noise: noisy signal.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Daehyun Kwon (11985629) (author)
مؤلفون آخرون: Hanbit Kang (14298410) (author), Dongwoo Lee (1511272) (author), Yoon-Chul Kim (16878966) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852022210724626432
author Daehyun Kwon (11985629)
author2 Hanbit Kang (14298410)
Dongwoo Lee (1511272)
Yoon-Chul Kim (16878966)
author2_role author
author
author
author_facet Daehyun Kwon (11985629)
Hanbit Kang (14298410)
Dongwoo Lee (1511272)
Yoon-Chul Kim (16878966)
author_role author
dc.creator.none.fl_str_mv Daehyun Kwon (11985629)
Hanbit Kang (14298410)
Dongwoo Lee (1511272)
Yoon-Chul Kim (16878966)
dc.date.none.fl_str_mv 2025-03-10T17:40:59Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0317630.g007
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Representative_examples_of_incorrect_predictions_in_the_reverse_polar_transformed_spectrograms_/28568669
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Physiology
Space Science
Biological Sciences not elsewhere classified
xlink "> portable
time fourier transform
reverse polar transformation
polar transformed time
detecting cardiac arrhythmias
cinc challenge 2017
deep cnn models
normal sinus rhythm
based spectrogram generation
predicting atrial fibrillation
polar transformed spectrograms
ecg signal visualization
trained deep cnns
monitoring heart rhythms
atrial fibrillation
deep learning
rhythm characteristics
heart conditions
based prediction
wearable electrocardiogram
three pre
results demonstrated
physiological signals
novel method
intuitive representation
increasingly utilized
four classes
existing methods
ecg recordings
ecg data
confidently assess
dc.title.none.fl_str_mv Representative examples of incorrect predictions in the reverse polar transformed spectrograms.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>Afib: atrial fibrillation, Normal: normal sinus rhythm, Other: other rhythm, Noise: noisy signal.</p>
eu_rights_str_mv openAccess
id Manara_f6ecc643bdf87fdf642116f13401b217
identifier_str_mv 10.1371/journal.pone.0317630.g007
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28568669
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Representative examples of incorrect predictions in the reverse polar transformed spectrograms.Daehyun Kwon (11985629)Hanbit Kang (14298410)Dongwoo Lee (1511272)Yoon-Chul Kim (16878966)PhysiologySpace ScienceBiological Sciences not elsewhere classifiedxlink "> portabletime fourier transformreverse polar transformationpolar transformed timedetecting cardiac arrhythmiascinc challenge 2017deep cnn modelsnormal sinus rhythmbased spectrogram generationpredicting atrial fibrillationpolar transformed spectrogramsecg signal visualizationtrained deep cnnsmonitoring heart rhythmsatrial fibrillationdeep learningrhythm characteristicsheart conditionsbased predictionwearable electrocardiogramthree preresults demonstratedphysiological signalsnovel methodintuitive representationincreasingly utilizedfour classesexisting methodsecg recordingsecg dataconfidently assess<p>Afib: atrial fibrillation, Normal: normal sinus rhythm, Other: other rhythm, Noise: noisy signal.</p>2025-03-10T17:40:59ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0317630.g007https://figshare.com/articles/figure/Representative_examples_of_incorrect_predictions_in_the_reverse_polar_transformed_spectrograms_/28568669CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/285686692025-03-10T17:40:59Z
spellingShingle Representative examples of incorrect predictions in the reverse polar transformed spectrograms.
Daehyun Kwon (11985629)
Physiology
Space Science
Biological Sciences not elsewhere classified
xlink "> portable
time fourier transform
reverse polar transformation
polar transformed time
detecting cardiac arrhythmias
cinc challenge 2017
deep cnn models
normal sinus rhythm
based spectrogram generation
predicting atrial fibrillation
polar transformed spectrograms
ecg signal visualization
trained deep cnns
monitoring heart rhythms
atrial fibrillation
deep learning
rhythm characteristics
heart conditions
based prediction
wearable electrocardiogram
three pre
results demonstrated
physiological signals
novel method
intuitive representation
increasingly utilized
four classes
existing methods
ecg recordings
ecg data
confidently assess
status_str publishedVersion
title Representative examples of incorrect predictions in the reverse polar transformed spectrograms.
title_full Representative examples of incorrect predictions in the reverse polar transformed spectrograms.
title_fullStr Representative examples of incorrect predictions in the reverse polar transformed spectrograms.
title_full_unstemmed Representative examples of incorrect predictions in the reverse polar transformed spectrograms.
title_short Representative examples of incorrect predictions in the reverse polar transformed spectrograms.
title_sort Representative examples of incorrect predictions in the reverse polar transformed spectrograms.
topic Physiology
Space Science
Biological Sciences not elsewhere classified
xlink "> portable
time fourier transform
reverse polar transformation
polar transformed time
detecting cardiac arrhythmias
cinc challenge 2017
deep cnn models
normal sinus rhythm
based spectrogram generation
predicting atrial fibrillation
polar transformed spectrograms
ecg signal visualization
trained deep cnns
monitoring heart rhythms
atrial fibrillation
deep learning
rhythm characteristics
heart conditions
based prediction
wearable electrocardiogram
three pre
results demonstrated
physiological signals
novel method
intuitive representation
increasingly utilized
four classes
existing methods
ecg recordings
ecg data
confidently assess