S6 Data -

<div><p>This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. Th...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Yuhang Zhang (3144870) (author)
مؤلفون آخرون: Xiaofeng Wu (288608) (author), Jiawei Xu (394968) (author), Zihao Ning (20485484) (author), Xiao Han (102316) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852023278235811840
author Yuhang Zhang (3144870)
author2 Xiaofeng Wu (288608)
Jiawei Xu (394968)
Zihao Ning (20485484)
Xiao Han (102316)
author2_role author
author
author
author
author_facet Yuhang Zhang (3144870)
Xiaofeng Wu (288608)
Jiawei Xu (394968)
Zihao Ning (20485484)
Xiao Han (102316)
author_role author
dc.creator.none.fl_str_mv Yuhang Zhang (3144870)
Xiaofeng Wu (288608)
Jiawei Xu (394968)
Zihao Ning (20485484)
Xiao Han (102316)
dc.date.none.fl_str_mv 2025-01-24T18:57:49Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0313065.s006
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/S6_Data_-/28275716
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Science Policy
Plant Biology
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
traditional rhythmic norms
time series data
surpassing traditional methods
simulation results reveal
identifying various styles
tonal transition redundancies
manage data uncertainties
classifying vocal styles
means </ p
improving classification accuracy
clustering tonal trends
chinese yue opera
yue opera
tonal ranges
eliminate uncertainties
vocal patterns
vocal melodies
clustering method
xlink ">
thereby enhancing
study develops
musical tones
linear interpolation
interdisciplinary research
innovative method
fuzzy c
findings enhance
correlation function
convergence speed
artistic creation
approach achieves
dc.title.none.fl_str_mv S6 Data -
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <div><p>This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. The second-order difference method extracts tonal trend features. We introduce a fuzzy C-means clustering method enhanced by quantum particle swarm optimization (QPSO) to manage data uncertainties, improving classification accuracy and convergence speed. Additionally, we employ a cross-correlation function to eliminate uncertainties from tonal transition redundancies. We designed a detection algorithm using trend data to validate our clustering method, thereby enhancing the accuracy of the analysis of tonal ranges and potential models. This method detects whether Yue Opera adheres to traditional rhythmic norms and models the regularity of musical tones and vocal patterns. Simulation results reveal that our approach achieves a 91.4% accuracy in classifying vocal styles, surpassing traditional methods and demonstrating its potential for identifying various styles. This research offers technical support for Yue Opera music education and interdisciplinary research. The findings enhance the quality of artistic creation and performance in Yue Opera, ensuring its preservation and development.</p></div>
eu_rights_str_mv openAccess
id Manara_f8f8913cd40f8e348be6f00a0d96d7e1
identifier_str_mv 10.1371/journal.pone.0313065.s006
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28275716
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling S6 Data - Yuhang Zhang (3144870)Xiaofeng Wu (288608)Jiawei Xu (394968)Zihao Ning (20485484)Xiao Han (102316)Science PolicyPlant BiologySpace ScienceBiological Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedtraditional rhythmic normstime series datasurpassing traditional methodssimulation results revealidentifying various stylestonal transition redundanciesmanage data uncertaintiesclassifying vocal stylesmeans </ pimproving classification accuracyclustering tonal trendschinese yue operayue operatonal rangeseliminate uncertaintiesvocal patternsvocal melodiesclustering methodxlink ">thereby enhancingstudy developsmusical toneslinear interpolationinterdisciplinary researchinnovative methodfuzzy cfindings enhancecorrelation functionconvergence speedartistic creationapproach achieves<div><p>This study develops an innovative method for analyzing and clustering tonal trends in Chinese Yue Opera to identify different vocal styles accurately. Linear interpolation is applied to process the time series data of vocal melodies, addressing inconsistent feature dimensions. The second-order difference method extracts tonal trend features. We introduce a fuzzy C-means clustering method enhanced by quantum particle swarm optimization (QPSO) to manage data uncertainties, improving classification accuracy and convergence speed. Additionally, we employ a cross-correlation function to eliminate uncertainties from tonal transition redundancies. We designed a detection algorithm using trend data to validate our clustering method, thereby enhancing the accuracy of the analysis of tonal ranges and potential models. This method detects whether Yue Opera adheres to traditional rhythmic norms and models the regularity of musical tones and vocal patterns. Simulation results reveal that our approach achieves a 91.4% accuracy in classifying vocal styles, surpassing traditional methods and demonstrating its potential for identifying various styles. This research offers technical support for Yue Opera music education and interdisciplinary research. The findings enhance the quality of artistic creation and performance in Yue Opera, ensuring its preservation and development.</p></div>2025-01-24T18:57:49ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0313065.s006https://figshare.com/articles/dataset/S6_Data_-/28275716CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/282757162025-01-24T18:57:49Z
spellingShingle S6 Data -
Yuhang Zhang (3144870)
Science Policy
Plant Biology
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
traditional rhythmic norms
time series data
surpassing traditional methods
simulation results reveal
identifying various styles
tonal transition redundancies
manage data uncertainties
classifying vocal styles
means </ p
improving classification accuracy
clustering tonal trends
chinese yue opera
yue opera
tonal ranges
eliminate uncertainties
vocal patterns
vocal melodies
clustering method
xlink ">
thereby enhancing
study develops
musical tones
linear interpolation
interdisciplinary research
innovative method
fuzzy c
findings enhance
correlation function
convergence speed
artistic creation
approach achieves
status_str publishedVersion
title S6 Data -
title_full S6 Data -
title_fullStr S6 Data -
title_full_unstemmed S6 Data -
title_short S6 Data -
title_sort S6 Data -
topic Science Policy
Plant Biology
Space Science
Biological Sciences not elsewhere classified
Information Systems not elsewhere classified
traditional rhythmic norms
time series data
surpassing traditional methods
simulation results reveal
identifying various styles
tonal transition redundancies
manage data uncertainties
classifying vocal styles
means </ p
improving classification accuracy
clustering tonal trends
chinese yue opera
yue opera
tonal ranges
eliminate uncertainties
vocal patterns
vocal melodies
clustering method
xlink ">
thereby enhancing
study develops
musical tones
linear interpolation
interdisciplinary research
innovative method
fuzzy c
findings enhance
correlation function
convergence speed
artistic creation
approach achieves