Latent-class analysis-derived brucellosis prevalence estimates by production system (pastoral and non-pastoral) and species (cattle, sheep, and goats).

<p>White dots indicate the median, black diamonds the mean, black boxes the 50% credible interval, and black lines the 95% credible interval. ‘n’ indicates the number of animals sampled and tested for brucellosis with both the Rose Bengal test (RBT) and competitive enzyme-linked immunosorbent...

Full description

Saved in:
Bibliographic Details
Main Author: Ângelo J. F. Mendes (20727333) (author)
Other Authors: Daniel T. Haydon (7499906) (author), William A. de Glanville (7431773) (author), Rebecca F. Bodenham (11326851) (author), AbdulHamid S. Lukambagire (8824208) (author), Paul C. D. Johnson (9543637) (author), Gabriel M. Shirima (7251362) (author), Sarah Cleaveland (83792) (author), Emma McIntosh (787413) (author), Nick Hanley (591087) (author), Jo E. B. Halliday (7499909) (author)
Published: 2025
Subjects:
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1852022690841362432
author Ângelo J. F. Mendes (20727333)
author2 Daniel T. Haydon (7499906)
William A. de Glanville (7431773)
Rebecca F. Bodenham (11326851)
AbdulHamid S. Lukambagire (8824208)
Paul C. D. Johnson (9543637)
Gabriel M. Shirima (7251362)
Sarah Cleaveland (83792)
Emma McIntosh (787413)
Nick Hanley (591087)
Jo E. B. Halliday (7499909)
author2_role author
author
author
author
author
author
author
author
author
author
author_facet Ângelo J. F. Mendes (20727333)
Daniel T. Haydon (7499906)
William A. de Glanville (7431773)
Rebecca F. Bodenham (11326851)
AbdulHamid S. Lukambagire (8824208)
Paul C. D. Johnson (9543637)
Gabriel M. Shirima (7251362)
Sarah Cleaveland (83792)
Emma McIntosh (787413)
Nick Hanley (591087)
Jo E. B. Halliday (7499909)
author_role author
dc.creator.none.fl_str_mv Ângelo J. F. Mendes (20727333)
Daniel T. Haydon (7499906)
William A. de Glanville (7431773)
Rebecca F. Bodenham (11326851)
AbdulHamid S. Lukambagire (8824208)
Paul C. D. Johnson (9543637)
Gabriel M. Shirima (7251362)
Sarah Cleaveland (83792)
Emma McIntosh (787413)
Nick Hanley (591087)
Jo E. B. Halliday (7499909)
dc.date.none.fl_str_mv 2025-02-14T18:37:41Z
dc.identifier.none.fl_str_mv 10.1371/journal.pntd.0012814.g003
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Latent-class_analysis-derived_brucellosis_prevalence_estimates_by_production_system_pastoral_and_non-pastoral_and_species_cattle_sheep_and_goats_/28420497
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Medicine
Biotechnology
Ecology
Cancer
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
per infected animal
guide policy development
economic modelling framework
2 – 211
2 – 17
economic impacts caused
class analysis model
4 – 23
1 – 1
8 – 228
8 – 17
2 – 1
annual losses attributable
7 – 25
1 – 3
1 – 8
4 – 6
2 – 3
6 ), 1
div >< p
3 – 4
6 ), 6
9 ), 1
7 ), 9
pastoral production systems
level brucellosis prevalence
8 ),
level losses
wide impacts
pastoral systems
growth model
estimated losses
livestock production
0 ),
widespread distribution
using tanzania
uncertainty interval
surveys conducted
resource settings
potential interventions
many low
international dollars
inform cost
human health
derived income
clustering algorithm
classify households
central tanzania
brucella </
benefit analyses
bayesian latent
541 households
384 classified
dc.title.none.fl_str_mv Latent-class analysis-derived brucellosis prevalence estimates by production system (pastoral and non-pastoral) and species (cattle, sheep, and goats).
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>White dots indicate the median, black diamonds the mean, black boxes the 50% credible interval, and black lines the 95% credible interval. ‘n’ indicates the number of animals sampled and tested for brucellosis with both the Rose Bengal test (RBT) and competitive enzyme-linked immunosorbent assay (cELISA).</p>
eu_rights_str_mv openAccess
id Manara_fa6956bb2c4e74f3efbc95ef07ec6df0
identifier_str_mv 10.1371/journal.pntd.0012814.g003
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28420497
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Latent-class analysis-derived brucellosis prevalence estimates by production system (pastoral and non-pastoral) and species (cattle, sheep, and goats).Ângelo J. F. Mendes (20727333)Daniel T. Haydon (7499906)William A. de Glanville (7431773)Rebecca F. Bodenham (11326851)AbdulHamid S. Lukambagire (8824208)Paul C. D. Johnson (9543637)Gabriel M. Shirima (7251362)Sarah Cleaveland (83792)Emma McIntosh (787413)Nick Hanley (591087)Jo E. B. Halliday (7499909)MedicineBiotechnologyEcologyCancerScience PolicyEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedper infected animalguide policy developmenteconomic modelling framework2 – 2112 – 17economic impacts causedclass analysis model4 – 231 – 18 – 2288 – 172 – 1annual losses attributable7 – 251 – 31 – 84 – 62 – 36 ), 1div >< p3 – 46 ), 69 ), 17 ), 9pastoral production systemslevel brucellosis prevalence8 ),level losseswide impactspastoral systemsgrowth modelestimated losseslivestock production0 ),widespread distributionusing tanzaniauncertainty intervalsurveys conductedresource settingspotential interventionsmany lowinternational dollarsinform costhuman healthderived incomeclustering algorithmclassify householdscentral tanzaniabrucella </benefit analysesbayesian latent541 households384 classified<p>White dots indicate the median, black diamonds the mean, black boxes the 50% credible interval, and black lines the 95% credible interval. ‘n’ indicates the number of animals sampled and tested for brucellosis with both the Rose Bengal test (RBT) and competitive enzyme-linked immunosorbent assay (cELISA).</p>2025-02-14T18:37:41ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pntd.0012814.g003https://figshare.com/articles/figure/Latent-class_analysis-derived_brucellosis_prevalence_estimates_by_production_system_pastoral_and_non-pastoral_and_species_cattle_sheep_and_goats_/28420497CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/284204972025-02-14T18:37:41Z
spellingShingle Latent-class analysis-derived brucellosis prevalence estimates by production system (pastoral and non-pastoral) and species (cattle, sheep, and goats).
Ângelo J. F. Mendes (20727333)
Medicine
Biotechnology
Ecology
Cancer
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
per infected animal
guide policy development
economic modelling framework
2 – 211
2 – 17
economic impacts caused
class analysis model
4 – 23
1 – 1
8 – 228
8 – 17
2 – 1
annual losses attributable
7 – 25
1 – 3
1 – 8
4 – 6
2 – 3
6 ), 1
div >< p
3 – 4
6 ), 6
9 ), 1
7 ), 9
pastoral production systems
level brucellosis prevalence
8 ),
level losses
wide impacts
pastoral systems
growth model
estimated losses
livestock production
0 ),
widespread distribution
using tanzania
uncertainty interval
surveys conducted
resource settings
potential interventions
many low
international dollars
inform cost
human health
derived income
clustering algorithm
classify households
central tanzania
brucella </
benefit analyses
bayesian latent
541 households
384 classified
status_str publishedVersion
title Latent-class analysis-derived brucellosis prevalence estimates by production system (pastoral and non-pastoral) and species (cattle, sheep, and goats).
title_full Latent-class analysis-derived brucellosis prevalence estimates by production system (pastoral and non-pastoral) and species (cattle, sheep, and goats).
title_fullStr Latent-class analysis-derived brucellosis prevalence estimates by production system (pastoral and non-pastoral) and species (cattle, sheep, and goats).
title_full_unstemmed Latent-class analysis-derived brucellosis prevalence estimates by production system (pastoral and non-pastoral) and species (cattle, sheep, and goats).
title_short Latent-class analysis-derived brucellosis prevalence estimates by production system (pastoral and non-pastoral) and species (cattle, sheep, and goats).
title_sort Latent-class analysis-derived brucellosis prevalence estimates by production system (pastoral and non-pastoral) and species (cattle, sheep, and goats).
topic Medicine
Biotechnology
Ecology
Cancer
Science Policy
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
per infected animal
guide policy development
economic modelling framework
2 – 211
2 – 17
economic impacts caused
class analysis model
4 – 23
1 – 1
8 – 228
8 – 17
2 – 1
annual losses attributable
7 – 25
1 – 3
1 – 8
4 – 6
2 – 3
6 ), 1
div >< p
3 – 4
6 ), 6
9 ), 1
7 ), 9
pastoral production systems
level brucellosis prevalence
8 ),
level losses
wide impacts
pastoral systems
growth model
estimated losses
livestock production
0 ),
widespread distribution
using tanzania
uncertainty interval
surveys conducted
resource settings
potential interventions
many low
international dollars
inform cost
human health
derived income
clustering algorithm
classify households
central tanzania
brucella </
benefit analyses
bayesian latent
541 households
384 classified