Convergence curves of the proposed algorithm on the ORL and Yale datasets.

<p>The objective function value decreases rapidly in the first few iterations and stabilizes as the algorithm converges.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Qin Li (36669) (author)
مؤلفون آخرون: Geng Yang (157199) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852019771332100096
author Qin Li (36669)
author2 Geng Yang (157199)
author2_role author
author_facet Qin Li (36669)
Geng Yang (157199)
author_role author
dc.creator.none.fl_str_mv Qin Li (36669)
Geng Yang (157199)
dc.date.none.fl_str_mv 2025-06-02T17:48:37Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0321628.g001
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Convergence_curves_of_the_proposed_algorithm_on_the_ORL_and_Yale_datasets_/29215272
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Science Policy
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
world datasets demonstrate
standard spectral clustering
shown promising performance
reduced computational complexity
multiview clustering tasks
improves clustering performance
improve clustering performance
important research direction
exploring multiple representations
assigning appropriate weights
clustering results depending
data point without
experimental results
weight assignments
view based
means required
extensively studied
directly assigned
cluster labels
based methods
dc.title.none.fl_str_mv Convergence curves of the proposed algorithm on the ORL and Yale datasets.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The objective function value decreases rapidly in the first few iterations and stabilizes as the algorithm converges.</p>
eu_rights_str_mv openAccess
id Manara_faa77cc77ca1ad1d9c8cd2d778f7bd5f
identifier_str_mv 10.1371/journal.pone.0321628.g001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/29215272
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Convergence curves of the proposed algorithm on the ORL and Yale datasets.Qin Li (36669)Geng Yang (157199)Cell BiologyScience PolicySpace ScienceEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedworld datasets demonstratestandard spectral clusteringshown promising performancereduced computational complexitymultiview clustering tasksimproves clustering performanceimprove clustering performanceimportant research directionexploring multiple representationsassigning appropriate weightsclustering results dependingdata point withoutexperimental resultsweight assignmentsview basedmeans requiredextensively studieddirectly assignedcluster labelsbased methods<p>The objective function value decreases rapidly in the first few iterations and stabilizes as the algorithm converges.</p>2025-06-02T17:48:37ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0321628.g001https://figshare.com/articles/figure/Convergence_curves_of_the_proposed_algorithm_on_the_ORL_and_Yale_datasets_/29215272CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292152722025-06-02T17:48:37Z
spellingShingle Convergence curves of the proposed algorithm on the ORL and Yale datasets.
Qin Li (36669)
Cell Biology
Science Policy
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
world datasets demonstrate
standard spectral clustering
shown promising performance
reduced computational complexity
multiview clustering tasks
improves clustering performance
improve clustering performance
important research direction
exploring multiple representations
assigning appropriate weights
clustering results depending
data point without
experimental results
weight assignments
view based
means required
extensively studied
directly assigned
cluster labels
based methods
status_str publishedVersion
title Convergence curves of the proposed algorithm on the ORL and Yale datasets.
title_full Convergence curves of the proposed algorithm on the ORL and Yale datasets.
title_fullStr Convergence curves of the proposed algorithm on the ORL and Yale datasets.
title_full_unstemmed Convergence curves of the proposed algorithm on the ORL and Yale datasets.
title_short Convergence curves of the proposed algorithm on the ORL and Yale datasets.
title_sort Convergence curves of the proposed algorithm on the ORL and Yale datasets.
topic Cell Biology
Science Policy
Space Science
Environmental Sciences not elsewhere classified
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
world datasets demonstrate
standard spectral clustering
shown promising performance
reduced computational complexity
multiview clustering tasks
improves clustering performance
improve clustering performance
important research direction
exploring multiple representations
assigning appropriate weights
clustering results depending
data point without
experimental results
weight assignments
view based
means required
extensively studied
directly assigned
cluster labels
based methods