Convergence curves of the proposed algorithm on the ORL and Yale datasets.
<p>The objective function value decreases rapidly in the first few iterations and stabilizes as the algorithm converges.</p>
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| _version_ | 1852019771332100096 |
|---|---|
| author | Qin Li (36669) |
| author2 | Geng Yang (157199) |
| author2_role | author |
| author_facet | Qin Li (36669) Geng Yang (157199) |
| author_role | author |
| dc.creator.none.fl_str_mv | Qin Li (36669) Geng Yang (157199) |
| dc.date.none.fl_str_mv | 2025-06-02T17:48:37Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pone.0321628.g001 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/Convergence_curves_of_the_proposed_algorithm_on_the_ORL_and_Yale_datasets_/29215272 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Cell Biology Science Policy Space Science Environmental Sciences not elsewhere classified Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified world datasets demonstrate standard spectral clustering shown promising performance reduced computational complexity multiview clustering tasks improves clustering performance improve clustering performance important research direction exploring multiple representations assigning appropriate weights clustering results depending data point without experimental results weight assignments view based means required extensively studied directly assigned cluster labels based methods |
| dc.title.none.fl_str_mv | Convergence curves of the proposed algorithm on the ORL and Yale datasets. |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p>The objective function value decreases rapidly in the first few iterations and stabilizes as the algorithm converges.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_faa77cc77ca1ad1d9c8cd2d778f7bd5f |
| identifier_str_mv | 10.1371/journal.pone.0321628.g001 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/29215272 |
| publishDate | 2025 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Convergence curves of the proposed algorithm on the ORL and Yale datasets.Qin Li (36669)Geng Yang (157199)Cell BiologyScience PolicySpace ScienceEnvironmental Sciences not elsewhere classifiedBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedworld datasets demonstratestandard spectral clusteringshown promising performancereduced computational complexitymultiview clustering tasksimproves clustering performanceimprove clustering performanceimportant research directionexploring multiple representationsassigning appropriate weightsclustering results dependingdata point withoutexperimental resultsweight assignmentsview basedmeans requiredextensively studieddirectly assignedcluster labelsbased methods<p>The objective function value decreases rapidly in the first few iterations and stabilizes as the algorithm converges.</p>2025-06-02T17:48:37ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0321628.g001https://figshare.com/articles/figure/Convergence_curves_of_the_proposed_algorithm_on_the_ORL_and_Yale_datasets_/29215272CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/292152722025-06-02T17:48:37Z |
| spellingShingle | Convergence curves of the proposed algorithm on the ORL and Yale datasets. Qin Li (36669) Cell Biology Science Policy Space Science Environmental Sciences not elsewhere classified Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified world datasets demonstrate standard spectral clustering shown promising performance reduced computational complexity multiview clustering tasks improves clustering performance improve clustering performance important research direction exploring multiple representations assigning appropriate weights clustering results depending data point without experimental results weight assignments view based means required extensively studied directly assigned cluster labels based methods |
| status_str | publishedVersion |
| title | Convergence curves of the proposed algorithm on the ORL and Yale datasets. |
| title_full | Convergence curves of the proposed algorithm on the ORL and Yale datasets. |
| title_fullStr | Convergence curves of the proposed algorithm on the ORL and Yale datasets. |
| title_full_unstemmed | Convergence curves of the proposed algorithm on the ORL and Yale datasets. |
| title_short | Convergence curves of the proposed algorithm on the ORL and Yale datasets. |
| title_sort | Convergence curves of the proposed algorithm on the ORL and Yale datasets. |
| topic | Cell Biology Science Policy Space Science Environmental Sciences not elsewhere classified Biological Sciences not elsewhere classified Mathematical Sciences not elsewhere classified Information Systems not elsewhere classified world datasets demonstrate standard spectral clustering shown promising performance reduced computational complexity multiview clustering tasks improves clustering performance improve clustering performance important research direction exploring multiple representations assigning appropriate weights clustering results depending data point without experimental results weight assignments view based means required extensively studied directly assigned cluster labels based methods |