Deep Discrete Encoders: Identifiable Deep Generative Models for Rich Data with Discrete Latent Layers
<p>In the era of generative AI, deep generative models (DGMs) with latent representations have gained tremendous popularity. Despite their impressive empirical performance, the statistical properties of these models remain underexplored. DGMs are often overparametrized, non-identifiable, and u...
محفوظ في:
| المؤلف الرئيسي: | Seunghyun Lee (1372719) (author) |
|---|---|
| مؤلفون آخرون: | Yuqi Gu (11145894) (author) |
| منشور في: |
2025
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
مواد مشابهة
-
Table 1_Toward explainable deep learning in healthcare through transition matrix and user-friendly features.docx
حسب: Oleksander Barmak (20320455)
منشور في: (2024) -
The Discrete Viscous Time theory
حسب: raoul bianchetti (20527787)
منشور في: (2025) -
Table 2_University teachers’ beliefs about the use of generative artificial intelligence for teaching and learning.docx
حسب: Beatriz Cabellos (20421681)
منشور في: (2024) -
Table 1_University teachers’ beliefs about the use of generative artificial intelligence for teaching and learning.docx
حسب: Beatriz Cabellos (20421681)
منشور في: (2024) -
Data for the Discrete-Time State-of-Charge Estimator for Latent Heat Thermal Energy Storage Units Based on a Recurrent Neural Network
حسب: Jose Bastida Hernandez (19655416)
منشور في: (2024)