Binning tetraploid genomes into four subgenomes using BUSCO genes.

<p><b>(A)</b> Using a greedy algorithm, we iterated through contigs from largest to smallest, appending a contig to a haplotypic subgenome if the duplication contributed by that contig does not exceed a specified threshold (<i>x</i> axes in the figure). Single-copy BUSC...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Amjad Khalaf (22470183) (author)
مؤلفون آخرون: Chenxi Zhou (369944) (author), Claudia C. Weber (22470186) (author), Emmelien Vancaester (3631018) (author), Ying Sims (12076085) (author), Alex Makunin (10874350) (author), Thomas C. Mathers (3262077) (author), Dominic E. Absolon (21653669) (author), Jonathan M. D. Wood (17797713) (author), Shane A. McCarthy (3170157) (author), Kamil S. Jaron (12153067) (author), Mark Blaxter (50235) (author), Mara K. N. Lawniczak (7832150) (author)
منشور في: 2025
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852015643633647616
author Amjad Khalaf (22470183)
author2 Chenxi Zhou (369944)
Claudia C. Weber (22470186)
Emmelien Vancaester (3631018)
Ying Sims (12076085)
Alex Makunin (10874350)
Thomas C. Mathers (3262077)
Dominic E. Absolon (21653669)
Jonathan M. D. Wood (17797713)
Shane A. McCarthy (3170157)
Kamil S. Jaron (12153067)
Mark Blaxter (50235)
Mara K. N. Lawniczak (7832150)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author_facet Amjad Khalaf (22470183)
Chenxi Zhou (369944)
Claudia C. Weber (22470186)
Emmelien Vancaester (3631018)
Ying Sims (12076085)
Alex Makunin (10874350)
Thomas C. Mathers (3262077)
Dominic E. Absolon (21653669)
Jonathan M. D. Wood (17797713)
Shane A. McCarthy (3170157)
Kamil S. Jaron (12153067)
Mark Blaxter (50235)
Mara K. N. Lawniczak (7832150)
author_role author
dc.creator.none.fl_str_mv Amjad Khalaf (22470183)
Chenxi Zhou (369944)
Claudia C. Weber (22470186)
Emmelien Vancaester (3631018)
Ying Sims (12076085)
Alex Makunin (10874350)
Thomas C. Mathers (3262077)
Dominic E. Absolon (21653669)
Jonathan M. D. Wood (17797713)
Shane A. McCarthy (3170157)
Kamil S. Jaron (12153067)
Mark Blaxter (50235)
Mara K. N. Lawniczak (7832150)
dc.date.none.fl_str_mv 2025-10-21T17:40:44Z
dc.identifier.none.fl_str_mv 10.1371/journal.pbio.3003446.g008
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Binning_tetraploid_genomes_into_four_subgenomes_using_BUSCO_genes_/30410045
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Microbiology
Genetics
Evolutionary Biology
Ecology
Marine Biology
Infectious Diseases
Biological Sciences not elsewhere classified
quality genome assemblies
infected arthropod hosts
growing public health
chromatin conformation capture
obligately intracellular parasites
different microsporidian groups
xlink "> microsporidia
create reference genomes
tetraploid genome haplotypes
results provide evidence
partial microsporidian genomes
microsporidia </ p
two diploid units
microsporidian parasites
microsporidian lifecycle
tetraploid genomes
homeologous genomes
complete genomes
striking tolerance
sexual reproduction
sexual cycle
segmental duplications
scale rearrangements
many aspects
likely recombine
likely organized
life project
help answer
evolution unexplored
economic importance
diploid lineages
dikaryotic cells
data indicated
darwin tree
characterized 14
also observed
dc.title.none.fl_str_mv Binning tetraploid genomes into four subgenomes using BUSCO genes.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p><b>(A)</b> Using a greedy algorithm, we iterated through contigs from largest to smallest, appending a contig to a haplotypic subgenome if the duplication contributed by that contig does not exceed a specified threshold (<i>x</i> axes in the figure). Single-copy BUSCO gene completeness is marked by circles and multi-copy BUSCO gene completeness is marked by crosses. A red dashed line denotes the BUSCO completeness score of the unbinned assembly. For <b>(B)</b> idChiSpeb1.µ and <b>(C)</b> ilAceEphe1.µ, we plotted the largest 10 contigs in subgenome 1 with their BUSCO genes, and coloured these genes in the other subgenomes by their positions in subgenome 1. The BUSCO annotations underlying this figure can be found in File Collection 5 at <a href="https://doi.org/10.5281/zenodo.17251512" target="_blank">https://doi.org/10.5281/zenodo.17251512</a>. The figure was generated using gerbil (<a href="https://github.com/Amjad-Khalaf/gerbil" target="_blank">https://github.com/Amjad-Khalaf/gerbil</a>), and manually annotated using <a href="https://inkscape.org/" target="_blank">InkScape</a> (version 1.2.2).</p>
eu_rights_str_mv openAccess
id Manara_fbf7cae19dce0a0e02a7a4e0870e88be
identifier_str_mv 10.1371/journal.pbio.3003446.g008
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30410045
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Binning tetraploid genomes into four subgenomes using BUSCO genes.Amjad Khalaf (22470183)Chenxi Zhou (369944)Claudia C. Weber (22470186)Emmelien Vancaester (3631018)Ying Sims (12076085)Alex Makunin (10874350)Thomas C. Mathers (3262077)Dominic E. Absolon (21653669)Jonathan M. D. Wood (17797713)Shane A. McCarthy (3170157)Kamil S. Jaron (12153067)Mark Blaxter (50235)Mara K. N. Lawniczak (7832150)MicrobiologyGeneticsEvolutionary BiologyEcologyMarine BiologyInfectious DiseasesBiological Sciences not elsewhere classifiedquality genome assembliesinfected arthropod hostsgrowing public healthchromatin conformation captureobligately intracellular parasitesdifferent microsporidian groupsxlink "> microsporidiacreate reference genomestetraploid genome haplotypesresults provide evidencepartial microsporidian genomesmicrosporidia </ ptwo diploid unitsmicrosporidian parasitesmicrosporidian lifecycletetraploid genomeshomeologous genomescomplete genomesstriking tolerancesexual reproductionsexual cyclesegmental duplicationsscale rearrangementsmany aspectslikely recombinelikely organizedlife projecthelp answerevolution unexploredeconomic importancediploid lineagesdikaryotic cellsdata indicateddarwin treecharacterized 14also observed<p><b>(A)</b> Using a greedy algorithm, we iterated through contigs from largest to smallest, appending a contig to a haplotypic subgenome if the duplication contributed by that contig does not exceed a specified threshold (<i>x</i> axes in the figure). Single-copy BUSCO gene completeness is marked by circles and multi-copy BUSCO gene completeness is marked by crosses. A red dashed line denotes the BUSCO completeness score of the unbinned assembly. For <b>(B)</b> idChiSpeb1.µ and <b>(C)</b> ilAceEphe1.µ, we plotted the largest 10 contigs in subgenome 1 with their BUSCO genes, and coloured these genes in the other subgenomes by their positions in subgenome 1. The BUSCO annotations underlying this figure can be found in File Collection 5 at <a href="https://doi.org/10.5281/zenodo.17251512" target="_blank">https://doi.org/10.5281/zenodo.17251512</a>. The figure was generated using gerbil (<a href="https://github.com/Amjad-Khalaf/gerbil" target="_blank">https://github.com/Amjad-Khalaf/gerbil</a>), and manually annotated using <a href="https://inkscape.org/" target="_blank">InkScape</a> (version 1.2.2).</p>2025-10-21T17:40:44ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pbio.3003446.g008https://figshare.com/articles/figure/Binning_tetraploid_genomes_into_four_subgenomes_using_BUSCO_genes_/30410045CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/304100452025-10-21T17:40:44Z
spellingShingle Binning tetraploid genomes into four subgenomes using BUSCO genes.
Amjad Khalaf (22470183)
Microbiology
Genetics
Evolutionary Biology
Ecology
Marine Biology
Infectious Diseases
Biological Sciences not elsewhere classified
quality genome assemblies
infected arthropod hosts
growing public health
chromatin conformation capture
obligately intracellular parasites
different microsporidian groups
xlink "> microsporidia
create reference genomes
tetraploid genome haplotypes
results provide evidence
partial microsporidian genomes
microsporidia </ p
two diploid units
microsporidian parasites
microsporidian lifecycle
tetraploid genomes
homeologous genomes
complete genomes
striking tolerance
sexual reproduction
sexual cycle
segmental duplications
scale rearrangements
many aspects
likely recombine
likely organized
life project
help answer
evolution unexplored
economic importance
diploid lineages
dikaryotic cells
data indicated
darwin tree
characterized 14
also observed
status_str publishedVersion
title Binning tetraploid genomes into four subgenomes using BUSCO genes.
title_full Binning tetraploid genomes into four subgenomes using BUSCO genes.
title_fullStr Binning tetraploid genomes into four subgenomes using BUSCO genes.
title_full_unstemmed Binning tetraploid genomes into four subgenomes using BUSCO genes.
title_short Binning tetraploid genomes into four subgenomes using BUSCO genes.
title_sort Binning tetraploid genomes into four subgenomes using BUSCO genes.
topic Microbiology
Genetics
Evolutionary Biology
Ecology
Marine Biology
Infectious Diseases
Biological Sciences not elsewhere classified
quality genome assemblies
infected arthropod hosts
growing public health
chromatin conformation capture
obligately intracellular parasites
different microsporidian groups
xlink "> microsporidia
create reference genomes
tetraploid genome haplotypes
results provide evidence
partial microsporidian genomes
microsporidia </ p
two diploid units
microsporidian parasites
microsporidian lifecycle
tetraploid genomes
homeologous genomes
complete genomes
striking tolerance
sexual reproduction
sexual cycle
segmental duplications
scale rearrangements
many aspects
likely recombine
likely organized
life project
help answer
evolution unexplored
economic importance
diploid lineages
dikaryotic cells
data indicated
darwin tree
characterized 14
also observed