Identification of hub DE-SRGs.

<p><b>A.</b> Volcano plot of DEGs, with gene symbols of hub DE-SRGs labeled and red lines illustrating the PPI between them. The size of each point indicates the gene’s importance within the PPI network. <b>B.</b> GSEA analysis demonstrating senescence-related pathways...

وصف كامل

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Xihao Shen (20347942) (author)
مؤلفون آخرون: Jiyue Wu (3814717) (author), Feilong Zhang (420300) (author), Qing Bi (3864823) (author), Zejia Sun (10031646) (author), Wei Wang (17594) (author)
منشور في: 2024
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852024869513854976
author Xihao Shen (20347942)
author2 Jiyue Wu (3814717)
Feilong Zhang (420300)
Qing Bi (3864823)
Zejia Sun (10031646)
Wei Wang (17594)
author2_role author
author
author
author
author
author_facet Xihao Shen (20347942)
Jiyue Wu (3814717)
Feilong Zhang (420300)
Qing Bi (3864823)
Zejia Sun (10031646)
Wei Wang (17594)
author_role author
dc.creator.none.fl_str_mv Xihao Shen (20347942)
Jiyue Wu (3814717)
Feilong Zhang (420300)
Qing Bi (3864823)
Zejia Sun (10031646)
Wei Wang (17594)
dc.date.none.fl_str_mv 2024-11-27T18:29:39Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0312272.g002
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Identification_of_hub_DE-SRGs_/27920716
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Cell Biology
Genetics
Molecular Biology
Neuroscience
Biotechnology
Developmental Biology
Marine Biology
Cancer
Virology
Computational Biology
weighted gene co
two clusters underscored
multiple established databases
machine learning algorithms
integrative machine learning
gene expression omnibus
demographic shift towards
consensus clustering algorithm
b >(</ b
aged donor kidneys
term graft outcomes
expression network analysis
differential expression analysis
comprehensive analysis underscores
worse graft survival
reduced graft survival
predicting graft survival
two rejection clusters
rejection remains elusive
optimal acute rejection
delayed graft function
ktx rejection poses
ktx rejection occurrence
identify predictive srgs
invasive diagnostic model
kidney transplant rejection
graft survival
ktx rejection
kidney graft
diagnostic model
kidney rejection
gsva analysis
cluster analysis
allograft function
rejection samples
diagnosing rejection
prognostic model
kidney transplantation
xlink ">
wgcna ),
significant threat
related genes
provided microarray
positive correlation
level landscape
ischemic damage
detailed cellular
conducted using
conclusions drawn
cluster c1
c2 ).
dc.title.none.fl_str_mv Identification of hub DE-SRGs.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p><b>A.</b> Volcano plot of DEGs, with gene symbols of hub DE-SRGs labeled and red lines illustrating the PPI between them. The size of each point indicates the gene’s importance within the PPI network. <b>B.</b> GSEA analysis demonstrating senescence-related pathways differently enriched between normal and rejection samples. <b>C.</b> Correlation heatmaps between different modules and rejection via WGCNA analysis. <b>D.</b> Correlation analysis of the module brown displaying the module connectivity of genes on the x-axis against the correlation coefficient with the phenotype on the y-axis. <b>E.</b> Intersection of DEGs, SRGs and genes from the brown module yielding 33 hub DE-SRGs. <b>F.</b> Heatmap of 33 hub DE-SRGs expression profiles in normal and rejection samples.</p>
eu_rights_str_mv openAccess
id Manara_fbf9d78739a54eaf0dfd40eeed781e2f
identifier_str_mv 10.1371/journal.pone.0312272.g002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/27920716
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Identification of hub DE-SRGs.Xihao Shen (20347942)Jiyue Wu (3814717)Feilong Zhang (420300)Qing Bi (3864823)Zejia Sun (10031646)Wei Wang (17594)Cell BiologyGeneticsMolecular BiologyNeuroscienceBiotechnologyDevelopmental BiologyMarine BiologyCancerVirologyComputational Biologyweighted gene cotwo clusters underscoredmultiple established databasesmachine learning algorithmsintegrative machine learninggene expression omnibusdemographic shift towardsconsensus clustering algorithmb >(</ baged donor kidneysterm graft outcomesexpression network analysisdifferential expression analysiscomprehensive analysis underscoresworse graft survivalreduced graft survivalpredicting graft survivaltwo rejection clustersrejection remains elusiveoptimal acute rejectiondelayed graft functionktx rejection posesktx rejection occurrenceidentify predictive srgsinvasive diagnostic modelkidney transplant rejectiongraft survivalktx rejectionkidney graftdiagnostic modelkidney rejectiongsva analysiscluster analysisallograft functionrejection samplesdiagnosing rejectionprognostic modelkidney transplantationxlink ">wgcna ),significant threatrelated genesprovided microarraypositive correlationlevel landscapeischemic damagedetailed cellularconducted usingconclusions drawncluster c1c2 ).<p><b>A.</b> Volcano plot of DEGs, with gene symbols of hub DE-SRGs labeled and red lines illustrating the PPI between them. The size of each point indicates the gene’s importance within the PPI network. <b>B.</b> GSEA analysis demonstrating senescence-related pathways differently enriched between normal and rejection samples. <b>C.</b> Correlation heatmaps between different modules and rejection via WGCNA analysis. <b>D.</b> Correlation analysis of the module brown displaying the module connectivity of genes on the x-axis against the correlation coefficient with the phenotype on the y-axis. <b>E.</b> Intersection of DEGs, SRGs and genes from the brown module yielding 33 hub DE-SRGs. <b>F.</b> Heatmap of 33 hub DE-SRGs expression profiles in normal and rejection samples.</p>2024-11-27T18:29:39ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0312272.g002https://figshare.com/articles/figure/Identification_of_hub_DE-SRGs_/27920716CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/279207162024-11-27T18:29:39Z
spellingShingle Identification of hub DE-SRGs.
Xihao Shen (20347942)
Cell Biology
Genetics
Molecular Biology
Neuroscience
Biotechnology
Developmental Biology
Marine Biology
Cancer
Virology
Computational Biology
weighted gene co
two clusters underscored
multiple established databases
machine learning algorithms
integrative machine learning
gene expression omnibus
demographic shift towards
consensus clustering algorithm
b >(</ b
aged donor kidneys
term graft outcomes
expression network analysis
differential expression analysis
comprehensive analysis underscores
worse graft survival
reduced graft survival
predicting graft survival
two rejection clusters
rejection remains elusive
optimal acute rejection
delayed graft function
ktx rejection poses
ktx rejection occurrence
identify predictive srgs
invasive diagnostic model
kidney transplant rejection
graft survival
ktx rejection
kidney graft
diagnostic model
kidney rejection
gsva analysis
cluster analysis
allograft function
rejection samples
diagnosing rejection
prognostic model
kidney transplantation
xlink ">
wgcna ),
significant threat
related genes
provided microarray
positive correlation
level landscape
ischemic damage
detailed cellular
conducted using
conclusions drawn
cluster c1
c2 ).
status_str publishedVersion
title Identification of hub DE-SRGs.
title_full Identification of hub DE-SRGs.
title_fullStr Identification of hub DE-SRGs.
title_full_unstemmed Identification of hub DE-SRGs.
title_short Identification of hub DE-SRGs.
title_sort Identification of hub DE-SRGs.
topic Cell Biology
Genetics
Molecular Biology
Neuroscience
Biotechnology
Developmental Biology
Marine Biology
Cancer
Virology
Computational Biology
weighted gene co
two clusters underscored
multiple established databases
machine learning algorithms
integrative machine learning
gene expression omnibus
demographic shift towards
consensus clustering algorithm
b >(</ b
aged donor kidneys
term graft outcomes
expression network analysis
differential expression analysis
comprehensive analysis underscores
worse graft survival
reduced graft survival
predicting graft survival
two rejection clusters
rejection remains elusive
optimal acute rejection
delayed graft function
ktx rejection poses
ktx rejection occurrence
identify predictive srgs
invasive diagnostic model
kidney transplant rejection
graft survival
ktx rejection
kidney graft
diagnostic model
kidney rejection
gsva analysis
cluster analysis
allograft function
rejection samples
diagnosing rejection
prognostic model
kidney transplantation
xlink ">
wgcna ),
significant threat
related genes
provided microarray
positive correlation
level landscape
ischemic damage
detailed cellular
conducted using
conclusions drawn
cluster c1
c2 ).