_version_ 1852020580462624768
author Wenhao Ren (2561731)
author2 Zuowei Zhong (21300382)
author2_role author
author_facet Wenhao Ren (2561731)
Zuowei Zhong (21300382)
author_role author
dc.creator.none.fl_str_mv Wenhao Ren (2561731)
Zuowei Zhong (21300382)
dc.date.none.fl_str_mv 2025-05-09T17:36:57Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0321640.t001
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Comparison_of_the_detection_effect_of_each_model_for_the_test_set_/28992553
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Biotechnology
Sociology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> developing
varying crack sizes
irregular convolution operations
hierarchical backbone network
handle complex backgrounds
global contextual information
ensuring structural integrity
benchmark dataset demonstrate
reducing computational overhead
optimizes feature extraction
automatic crack detection
model &# 8217
novel lightweight approach
detecting building cracks
proposed approach
novel integration
feature fusion
computational complexity
building structures
accuracy detection
model achieves
baseline model
detecting micro
study introduces
results highlight
precise localization
practical applicability
integrating local
experimental results
convolutional module
available datasets
attention mechanisms
attention mechanism
accurate algorithm
dc.title.none.fl_str_mv Comparison of the detection effect of each model for the test set.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Comparison of the detection effect of each model for the test set.</p>
eu_rights_str_mv openAccess
id Manara_fc85a4e1e421a9954ff40939ec3690fa
identifier_str_mv 10.1371/journal.pone.0321640.t001
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28992553
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Comparison of the detection effect of each model for the test set.Wenhao Ren (2561731)Zuowei Zhong (21300382)BiochemistryBiotechnologySociologySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedxlink "> developingvarying crack sizesirregular convolution operationshierarchical backbone networkhandle complex backgroundsglobal contextual informationensuring structural integritybenchmark dataset demonstratereducing computational overheadoptimizes feature extractionautomatic crack detectionmodel &# 8217novel lightweight approachdetecting building cracksproposed approachnovel integrationfeature fusioncomputational complexitybuilding structuresaccuracy detectionmodel achievesbaseline modeldetecting microstudy introducesresults highlightprecise localizationpractical applicabilityintegrating localexperimental resultsconvolutional moduleavailable datasetsattention mechanismsattention mechanismaccurate algorithm<p>Comparison of the detection effect of each model for the test set.</p>2025-05-09T17:36:57ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0321640.t001https://figshare.com/articles/dataset/Comparison_of_the_detection_effect_of_each_model_for_the_test_set_/28992553CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/289925532025-05-09T17:36:57Z
spellingShingle Comparison of the detection effect of each model for the test set.
Wenhao Ren (2561731)
Biochemistry
Biotechnology
Sociology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> developing
varying crack sizes
irregular convolution operations
hierarchical backbone network
handle complex backgrounds
global contextual information
ensuring structural integrity
benchmark dataset demonstrate
reducing computational overhead
optimizes feature extraction
automatic crack detection
model &# 8217
novel lightweight approach
detecting building cracks
proposed approach
novel integration
feature fusion
computational complexity
building structures
accuracy detection
model achieves
baseline model
detecting micro
study introduces
results highlight
precise localization
practical applicability
integrating local
experimental results
convolutional module
available datasets
attention mechanisms
attention mechanism
accurate algorithm
status_str publishedVersion
title Comparison of the detection effect of each model for the test set.
title_full Comparison of the detection effect of each model for the test set.
title_fullStr Comparison of the detection effect of each model for the test set.
title_full_unstemmed Comparison of the detection effect of each model for the test set.
title_short Comparison of the detection effect of each model for the test set.
title_sort Comparison of the detection effect of each model for the test set.
topic Biochemistry
Biotechnology
Sociology
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
xlink "> developing
varying crack sizes
irregular convolution operations
hierarchical backbone network
handle complex backgrounds
global contextual information
ensuring structural integrity
benchmark dataset demonstrate
reducing computational overhead
optimizes feature extraction
automatic crack detection
model &# 8217
novel lightweight approach
detecting building cracks
proposed approach
novel integration
feature fusion
computational complexity
building structures
accuracy detection
model achieves
baseline model
detecting micro
study introduces
results highlight
precise localization
practical applicability
integrating local
experimental results
convolutional module
available datasets
attention mechanisms
attention mechanism
accurate algorithm