Functional enrichment and correlation analysis of hub DE-SRGs.
<p><b>A.</b> GO enrichment analysis of hub DE-SRGs. BP: Biological process; CC: Cellular component, MF: Molecular function. <b>B.</b> KEGG pathway analysis of hub DE-SRGs. <b>C.</b> The analysis of the correlation among the 33 genes and their correlation wit...
محفوظ في:
| المؤلف الرئيسي: | |
|---|---|
| مؤلفون آخرون: | , , , , |
| منشور في: |
2024
|
| الموضوعات: | |
| الوسوم: |
إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
|
| _version_ | 1852024869511757824 |
|---|---|
| author | Xihao Shen (20347942) |
| author2 | Jiyue Wu (3814717) Feilong Zhang (420300) Qing Bi (3864823) Zejia Sun (10031646) Wei Wang (17594) |
| author2_role | author author author author author |
| author_facet | Xihao Shen (20347942) Jiyue Wu (3814717) Feilong Zhang (420300) Qing Bi (3864823) Zejia Sun (10031646) Wei Wang (17594) |
| author_role | author |
| dc.creator.none.fl_str_mv | Xihao Shen (20347942) Jiyue Wu (3814717) Feilong Zhang (420300) Qing Bi (3864823) Zejia Sun (10031646) Wei Wang (17594) |
| dc.date.none.fl_str_mv | 2024-11-27T18:29:40Z |
| dc.identifier.none.fl_str_mv | 10.1371/journal.pone.0312272.g003 |
| dc.relation.none.fl_str_mv | https://figshare.com/articles/figure/Functional_enrichment_and_correlation_analysis_of_hub_DE-SRGs_/27920719 |
| dc.rights.none.fl_str_mv | CC BY 4.0 info:eu-repo/semantics/openAccess |
| dc.subject.none.fl_str_mv | Cell Biology Genetics Molecular Biology Neuroscience Biotechnology Developmental Biology Marine Biology Cancer Virology Computational Biology weighted gene co two clusters underscored multiple established databases machine learning algorithms integrative machine learning gene expression omnibus demographic shift towards consensus clustering algorithm b >(</ b aged donor kidneys term graft outcomes expression network analysis differential expression analysis comprehensive analysis underscores worse graft survival reduced graft survival predicting graft survival two rejection clusters rejection remains elusive optimal acute rejection delayed graft function ktx rejection poses ktx rejection occurrence identify predictive srgs invasive diagnostic model kidney transplant rejection graft survival ktx rejection kidney graft diagnostic model kidney rejection gsva analysis cluster analysis allograft function rejection samples diagnosing rejection prognostic model kidney transplantation xlink "> wgcna ), significant threat related genes provided microarray positive correlation level landscape ischemic damage detailed cellular conducted using conclusions drawn cluster c1 c2 ). |
| dc.title.none.fl_str_mv | Functional enrichment and correlation analysis of hub DE-SRGs. |
| dc.type.none.fl_str_mv | Image Figure info:eu-repo/semantics/publishedVersion image |
| description | <p><b>A.</b> GO enrichment analysis of hub DE-SRGs. BP: Biological process; CC: Cellular component, MF: Molecular function. <b>B.</b> KEGG pathway analysis of hub DE-SRGs. <b>C.</b> The analysis of the correlation among the 33 genes and their correlation with “AGING_KIDNEY” datasets.</p> |
| eu_rights_str_mv | openAccess |
| id | Manara_fcd038bc3c2409d9e4d76f0462fdba8f |
| identifier_str_mv | 10.1371/journal.pone.0312272.g003 |
| network_acronym_str | Manara |
| network_name_str | ManaraRepo |
| oai_identifier_str | oai:figshare.com:article/27920719 |
| publishDate | 2024 |
| repository.mail.fl_str_mv | |
| repository.name.fl_str_mv | |
| repository_id_str | |
| rights_invalid_str_mv | CC BY 4.0 |
| spelling | Functional enrichment and correlation analysis of hub DE-SRGs.Xihao Shen (20347942)Jiyue Wu (3814717)Feilong Zhang (420300)Qing Bi (3864823)Zejia Sun (10031646)Wei Wang (17594)Cell BiologyGeneticsMolecular BiologyNeuroscienceBiotechnologyDevelopmental BiologyMarine BiologyCancerVirologyComputational Biologyweighted gene cotwo clusters underscoredmultiple established databasesmachine learning algorithmsintegrative machine learninggene expression omnibusdemographic shift towardsconsensus clustering algorithmb >(</ baged donor kidneysterm graft outcomesexpression network analysisdifferential expression analysiscomprehensive analysis underscoresworse graft survivalreduced graft survivalpredicting graft survivaltwo rejection clustersrejection remains elusiveoptimal acute rejectiondelayed graft functionktx rejection posesktx rejection occurrenceidentify predictive srgsinvasive diagnostic modelkidney transplant rejectiongraft survivalktx rejectionkidney graftdiagnostic modelkidney rejectiongsva analysiscluster analysisallograft functionrejection samplesdiagnosing rejectionprognostic modelkidney transplantationxlink ">wgcna ),significant threatrelated genesprovided microarraypositive correlationlevel landscapeischemic damagedetailed cellularconducted usingconclusions drawncluster c1c2 ).<p><b>A.</b> GO enrichment analysis of hub DE-SRGs. BP: Biological process; CC: Cellular component, MF: Molecular function. <b>B.</b> KEGG pathway analysis of hub DE-SRGs. <b>C.</b> The analysis of the correlation among the 33 genes and their correlation with “AGING_KIDNEY” datasets.</p>2024-11-27T18:29:40ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pone.0312272.g003https://figshare.com/articles/figure/Functional_enrichment_and_correlation_analysis_of_hub_DE-SRGs_/27920719CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/279207192024-11-27T18:29:40Z |
| spellingShingle | Functional enrichment and correlation analysis of hub DE-SRGs. Xihao Shen (20347942) Cell Biology Genetics Molecular Biology Neuroscience Biotechnology Developmental Biology Marine Biology Cancer Virology Computational Biology weighted gene co two clusters underscored multiple established databases machine learning algorithms integrative machine learning gene expression omnibus demographic shift towards consensus clustering algorithm b >(</ b aged donor kidneys term graft outcomes expression network analysis differential expression analysis comprehensive analysis underscores worse graft survival reduced graft survival predicting graft survival two rejection clusters rejection remains elusive optimal acute rejection delayed graft function ktx rejection poses ktx rejection occurrence identify predictive srgs invasive diagnostic model kidney transplant rejection graft survival ktx rejection kidney graft diagnostic model kidney rejection gsva analysis cluster analysis allograft function rejection samples diagnosing rejection prognostic model kidney transplantation xlink "> wgcna ), significant threat related genes provided microarray positive correlation level landscape ischemic damage detailed cellular conducted using conclusions drawn cluster c1 c2 ). |
| status_str | publishedVersion |
| title | Functional enrichment and correlation analysis of hub DE-SRGs. |
| title_full | Functional enrichment and correlation analysis of hub DE-SRGs. |
| title_fullStr | Functional enrichment and correlation analysis of hub DE-SRGs. |
| title_full_unstemmed | Functional enrichment and correlation analysis of hub DE-SRGs. |
| title_short | Functional enrichment and correlation analysis of hub DE-SRGs. |
| title_sort | Functional enrichment and correlation analysis of hub DE-SRGs. |
| topic | Cell Biology Genetics Molecular Biology Neuroscience Biotechnology Developmental Biology Marine Biology Cancer Virology Computational Biology weighted gene co two clusters underscored multiple established databases machine learning algorithms integrative machine learning gene expression omnibus demographic shift towards consensus clustering algorithm b >(</ b aged donor kidneys term graft outcomes expression network analysis differential expression analysis comprehensive analysis underscores worse graft survival reduced graft survival predicting graft survival two rejection clusters rejection remains elusive optimal acute rejection delayed graft function ktx rejection poses ktx rejection occurrence identify predictive srgs invasive diagnostic model kidney transplant rejection graft survival ktx rejection kidney graft diagnostic model kidney rejection gsva analysis cluster analysis allograft function rejection samples diagnosing rejection prognostic model kidney transplantation xlink "> wgcna ), significant threat related genes provided microarray positive correlation level landscape ischemic damage detailed cellular conducted using conclusions drawn cluster c1 c2 ). |