Univariate ROC curves for individual analysis of the 15 <i>m/z</i> suggested as biomarkers.

<p>The horizontal coordinates indicate the false positive rate; the vertical coordinates indicate the true positive rate; and the area under the curve (AUC) value indicates the prediction accuracy. ROC, Receptor operating characteristics.</p>

Gespeichert in:
Bibliographische Detailangaben
1. Verfasser: Ricardo E. Correa Fierro (22676430) (author)
Weitere Verfasser: Noroska Gabriela Mogollón Salazar (22676433) (author), Washington B. Cárdenas (3213597) (author), Evencio Joel Medina-Villamizar (22676436) (author), Jefferson Pastuña-Fasso (22676439) (author), Melanie Ochoa-Ocampo (21222826) (author), Giovanna Morán-Marcillo (22676442) (author), Mary Ernestina Regato Arrata (22676445) (author), Mildred Zambrano (16641645) (author), Joyce Andrade (16641648) (author), Juan Chang (8280894) (author), Saurabh Mehta (367781) (author), Fernanda Bertuccez Cordeiro (16641642) (author)
Veröffentlicht: 2025
Schlagworte:
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
_version_ 1849927643274674176
author Ricardo E. Correa Fierro (22676430)
author2 Noroska Gabriela Mogollón Salazar (22676433)
Washington B. Cárdenas (3213597)
Evencio Joel Medina-Villamizar (22676436)
Jefferson Pastuña-Fasso (22676439)
Melanie Ochoa-Ocampo (21222826)
Giovanna Morán-Marcillo (22676442)
Mary Ernestina Regato Arrata (22676445)
Mildred Zambrano (16641645)
Joyce Andrade (16641648)
Juan Chang (8280894)
Saurabh Mehta (367781)
Fernanda Bertuccez Cordeiro (16641642)
author2_role author
author
author
author
author
author
author
author
author
author
author
author
author_facet Ricardo E. Correa Fierro (22676430)
Noroska Gabriela Mogollón Salazar (22676433)
Washington B. Cárdenas (3213597)
Evencio Joel Medina-Villamizar (22676436)
Jefferson Pastuña-Fasso (22676439)
Melanie Ochoa-Ocampo (21222826)
Giovanna Morán-Marcillo (22676442)
Mary Ernestina Regato Arrata (22676445)
Mildred Zambrano (16641645)
Joyce Andrade (16641648)
Juan Chang (8280894)
Saurabh Mehta (367781)
Fernanda Bertuccez Cordeiro (16641642)
author_role author
dc.creator.none.fl_str_mv Ricardo E. Correa Fierro (22676430)
Noroska Gabriela Mogollón Salazar (22676433)
Washington B. Cárdenas (3213597)
Evencio Joel Medina-Villamizar (22676436)
Jefferson Pastuña-Fasso (22676439)
Melanie Ochoa-Ocampo (21222826)
Giovanna Morán-Marcillo (22676442)
Mary Ernestina Regato Arrata (22676445)
Mildred Zambrano (16641645)
Joyce Andrade (16641648)
Juan Chang (8280894)
Saurabh Mehta (367781)
Fernanda Bertuccez Cordeiro (16641642)
dc.date.none.fl_str_mv 2025-11-24T18:25:18Z
dc.identifier.none.fl_str_mv 10.1371/journal.pntd.0013691.g003
dc.relation.none.fl_str_mv https://figshare.com/articles/figure/Univariate_ROC_curves_for_individual_analysis_of_the_15_i_m_z_i_suggested_as_biomarkers_/30696717
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Biochemistry
Medicine
Microbiology
Cell Biology
Biotechnology
Cancer
Virology
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
receiver operating characteristic
highest predictive power
faster patient screening
component 5 showing
complex immune response
serum lipid metabolome
evaluate biomarker performance
denv ), triggers
serum lipidomics profiling
new diagnostic tools
div >< p
disproportionately affects children
assess group separation
pediatric dengue fever
dengue virus infection
denv infected group
dengue virus
dengue fever
lipid metabolism
diagnostic methods
diagnosis tools
dengue research
biomarker potential
biomarker discovery
z </
subtropical regions
metabolic alterations
may contribute
mass spectrometry
key role
glycerol lipids
fatty acids
despite advancements
curve analysis
adolescents infected
68345 ).
15 ).
dc.title.none.fl_str_mv Univariate ROC curves for individual analysis of the 15 <i>m/z</i> suggested as biomarkers.
dc.type.none.fl_str_mv Image
Figure
info:eu-repo/semantics/publishedVersion
image
description <p>The horizontal coordinates indicate the false positive rate; the vertical coordinates indicate the true positive rate; and the area under the curve (AUC) value indicates the prediction accuracy. ROC, Receptor operating characteristics.</p>
eu_rights_str_mv openAccess
id Manara_feef8088b78d1c84a1d32d794003ffb3
identifier_str_mv 10.1371/journal.pntd.0013691.g003
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30696717
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Univariate ROC curves for individual analysis of the 15 <i>m/z</i> suggested as biomarkers.Ricardo E. Correa Fierro (22676430)Noroska Gabriela Mogollón Salazar (22676433)Washington B. Cárdenas (3213597)Evencio Joel Medina-Villamizar (22676436)Jefferson Pastuña-Fasso (22676439)Melanie Ochoa-Ocampo (21222826)Giovanna Morán-Marcillo (22676442)Mary Ernestina Regato Arrata (22676445)Mildred Zambrano (16641645)Joyce Andrade (16641648)Juan Chang (8280894)Saurabh Mehta (367781)Fernanda Bertuccez Cordeiro (16641642)BiochemistryMedicineMicrobiologyCell BiologyBiotechnologyCancerVirologyBiological Sciences not elsewhere classifiedChemical Sciences not elsewhere classifiedreceiver operating characteristichighest predictive powerfaster patient screeningcomponent 5 showingcomplex immune responseserum lipid metabolomeevaluate biomarker performancedenv ), triggersserum lipidomics profilingnew diagnostic toolsdiv >< pdisproportionately affects childrenassess group separationpediatric dengue feverdengue virus infectiondenv infected groupdengue virusdengue feverlipid metabolismdiagnostic methodsdiagnosis toolsdengue researchbiomarker potentialbiomarker discoveryz </subtropical regionsmetabolic alterationsmay contributemass spectrometrykey roleglycerol lipidsfatty acidsdespite advancementscurve analysisadolescents infected68345 ).15 ).<p>The horizontal coordinates indicate the false positive rate; the vertical coordinates indicate the true positive rate; and the area under the curve (AUC) value indicates the prediction accuracy. ROC, Receptor operating characteristics.</p>2025-11-24T18:25:18ZImageFigureinfo:eu-repo/semantics/publishedVersionimage10.1371/journal.pntd.0013691.g003https://figshare.com/articles/figure/Univariate_ROC_curves_for_individual_analysis_of_the_15_i_m_z_i_suggested_as_biomarkers_/30696717CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/306967172025-11-24T18:25:18Z
spellingShingle Univariate ROC curves for individual analysis of the 15 <i>m/z</i> suggested as biomarkers.
Ricardo E. Correa Fierro (22676430)
Biochemistry
Medicine
Microbiology
Cell Biology
Biotechnology
Cancer
Virology
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
receiver operating characteristic
highest predictive power
faster patient screening
component 5 showing
complex immune response
serum lipid metabolome
evaluate biomarker performance
denv ), triggers
serum lipidomics profiling
new diagnostic tools
div >< p
disproportionately affects children
assess group separation
pediatric dengue fever
dengue virus infection
denv infected group
dengue virus
dengue fever
lipid metabolism
diagnostic methods
diagnosis tools
dengue research
biomarker potential
biomarker discovery
z </
subtropical regions
metabolic alterations
may contribute
mass spectrometry
key role
glycerol lipids
fatty acids
despite advancements
curve analysis
adolescents infected
68345 ).
15 ).
status_str publishedVersion
title Univariate ROC curves for individual analysis of the 15 <i>m/z</i> suggested as biomarkers.
title_full Univariate ROC curves for individual analysis of the 15 <i>m/z</i> suggested as biomarkers.
title_fullStr Univariate ROC curves for individual analysis of the 15 <i>m/z</i> suggested as biomarkers.
title_full_unstemmed Univariate ROC curves for individual analysis of the 15 <i>m/z</i> suggested as biomarkers.
title_short Univariate ROC curves for individual analysis of the 15 <i>m/z</i> suggested as biomarkers.
title_sort Univariate ROC curves for individual analysis of the 15 <i>m/z</i> suggested as biomarkers.
topic Biochemistry
Medicine
Microbiology
Cell Biology
Biotechnology
Cancer
Virology
Biological Sciences not elsewhere classified
Chemical Sciences not elsewhere classified
receiver operating characteristic
highest predictive power
faster patient screening
component 5 showing
complex immune response
serum lipid metabolome
evaluate biomarker performance
denv ), triggers
serum lipidomics profiling
new diagnostic tools
div >< p
disproportionately affects children
assess group separation
pediatric dengue fever
dengue virus infection
denv infected group
dengue virus
dengue fever
lipid metabolism
diagnostic methods
diagnosis tools
dengue research
biomarker potential
biomarker discovery
z </
subtropical regions
metabolic alterations
may contribute
mass spectrometry
key role
glycerol lipids
fatty acids
despite advancements
curve analysis
adolescents infected
68345 ).
15 ).