Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management

In response to the growing challenges of global warming and the energy crisis, the development of advanced personal thermal management fabrics is essential for conserving thermal energy, reducing carbon emissions, and ensuring thermal comfort. In this article, we present an effort to develop a polys...

Täydet tiedot

Tallennettuna:
Bibliografiset tiedot
Päätekijä: Madhurima Das (2036083) (author)
Muut tekijät: Ahmadreza Moradi (19064960) (author), Joanna Knapczyk-Korczak (8180214) (author), Piotr K. Szewczyk (8532783) (author), Michał Kopacz (22681642) (author), Waldemar Pichór (22681645) (author), Urszula Stachewicz (1556359) (author)
Julkaistu: 2025
Aiheet:
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!
_version_ 1849927634611339264
author Madhurima Das (2036083)
author2 Ahmadreza Moradi (19064960)
Joanna Knapczyk-Korczak (8180214)
Piotr K. Szewczyk (8532783)
Michał Kopacz (22681642)
Waldemar Pichór (22681645)
Urszula Stachewicz (1556359)
author2_role author
author
author
author
author
author
author_facet Madhurima Das (2036083)
Ahmadreza Moradi (19064960)
Joanna Knapczyk-Korczak (8180214)
Piotr K. Szewczyk (8532783)
Michał Kopacz (22681642)
Waldemar Pichór (22681645)
Urszula Stachewicz (1556359)
author_role author
dc.creator.none.fl_str_mv Madhurima Das (2036083)
Ahmadreza Moradi (19064960)
Joanna Knapczyk-Korczak (8180214)
Piotr K. Szewczyk (8532783)
Michał Kopacz (22681642)
Waldemar Pichór (22681645)
Urszula Stachewicz (1556359)
dc.date.none.fl_str_mv 2025-11-25T12:25:32Z
dc.identifier.none.fl_str_mv 10.1021/acsami.5c20292.s002
dc.relation.none.fl_str_mv https://figshare.com/articles/media/Breathable_Thermally_Insulating_Phase-Change_Fibrous_Mat_and_Yarn_Inspired_by_Penguin_Feather_Microstructure_for_Personal_Thermal_Management/30705607
dc.rights.none.fl_str_mv CC BY-NC 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Genetics
Molecular Biology
Evolutionary Biology
Developmental Biology
Inorganic Chemistry
Space Science
Chemical Sciences not elsewhere classified
thermal conductivity coefficient
specific temperature range
repeated thermal cycling
reducing carbon emissions
personal thermal management
penguin feather microstructure
infrared imaging reveals
incorporating peg improves
generation wearable textiles
excellent thermal stability
ensuring thermal comfort
effectively containing peg
drastic temperature changes
change fiber mats
89 j g
63 ± 0
13 ± 0
fibrous mats show
fabricated electrospun mat
conserving thermal energy
changeable fibrous mat
change fibrous mat
thermally insulating phase
alongside thermal performance
fibrous mat
energy crisis
unique morphology
structural integrity
results position
promising candidate
mechanical properties
growing challenges
global warming
30 cycles
033 w
dc.title.none.fl_str_mv Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management
dc.type.none.fl_str_mv Dataset
Media
info:eu-repo/semantics/publishedVersion
dataset
description In response to the growing challenges of global warming and the energy crisis, the development of advanced personal thermal management fabrics is essential for conserving thermal energy, reducing carbon emissions, and ensuring thermal comfort. In this article, we present an effort to develop a polystyrene (PS)–polyethylene glycol (PEG)-based fibrous mat and yarn with unique morphology, inspired by natural systems like penguin feathers. This material not only undergoes phase changes within a specific temperature range but also demonstrates excellent thermal insulation properties, effectively minimizing heat flux. Incorporating PEG improves the mechanical properties of both the fibrous mat and yarn structures, with the material retaining its structural integrity and effectively containing PEG during repeated thermal cycling. The phase-changeable fibrous mat and yarn achieved fusion enthalpies of 33.13 ± 0.36 and 31.63 ± 0.89 J g<sup>–1</sup>, respectively, with excellent thermal stability and durability, as confirmed through multiple heating–cooling cycles of up to 30 cycles. The thermal conductivity coefficient (λ) of the PS–PEG fibrous mat reaches 0.033 W m<sup>–1</sup> K<sup>–1</sup>, signifying excellent thermal insulation properties of the fabricated electrospun mat. Infrared imaging reveals the effective thermal buffering effect of phase-change fiber mats and yarns when weaved onto cotton fabric under drastic temperature changes. Moreover, the fibrous mats show a water vapor transmission rate (WVTR) of 3735 ± 234 g m<sup>–2</sup> day<sup>–1</sup>, indicating high breathability, alongside thermal performance. These results position the proposed biomimetic fibrous material as a promising candidate for next-generation wearable textiles in the future that enhance personal thermal comfort, offering both performance and sustainability.
eu_rights_str_mv openAccess
id Manara_ff741471dc5d805f07541ed39b007ad4
identifier_str_mv 10.1021/acsami.5c20292.s002
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/30705607
publishDate 2025
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY-NC 4.0
spelling Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal ManagementMadhurima Das (2036083)Ahmadreza Moradi (19064960)Joanna Knapczyk-Korczak (8180214)Piotr K. Szewczyk (8532783)Michał Kopacz (22681642)Waldemar Pichór (22681645)Urszula Stachewicz (1556359)GeneticsMolecular BiologyEvolutionary BiologyDevelopmental BiologyInorganic ChemistrySpace ScienceChemical Sciences not elsewhere classifiedthermal conductivity coefficientspecific temperature rangerepeated thermal cyclingreducing carbon emissionspersonal thermal managementpenguin feather microstructureinfrared imaging revealsincorporating peg improvesgeneration wearable textilesexcellent thermal stabilityensuring thermal comforteffectively containing pegdrastic temperature changeschange fiber mats89 j g63 ± 013 ± 0fibrous mats showfabricated electrospun matconserving thermal energychangeable fibrous matchange fibrous matthermally insulating phasealongside thermal performancefibrous matenergy crisisunique morphologystructural integrityresults positionpromising candidatemechanical propertiesgrowing challengesglobal warming30 cycles033 wIn response to the growing challenges of global warming and the energy crisis, the development of advanced personal thermal management fabrics is essential for conserving thermal energy, reducing carbon emissions, and ensuring thermal comfort. In this article, we present an effort to develop a polystyrene (PS)–polyethylene glycol (PEG)-based fibrous mat and yarn with unique morphology, inspired by natural systems like penguin feathers. This material not only undergoes phase changes within a specific temperature range but also demonstrates excellent thermal insulation properties, effectively minimizing heat flux. Incorporating PEG improves the mechanical properties of both the fibrous mat and yarn structures, with the material retaining its structural integrity and effectively containing PEG during repeated thermal cycling. The phase-changeable fibrous mat and yarn achieved fusion enthalpies of 33.13 ± 0.36 and 31.63 ± 0.89 J g<sup>–1</sup>, respectively, with excellent thermal stability and durability, as confirmed through multiple heating–cooling cycles of up to 30 cycles. The thermal conductivity coefficient (λ) of the PS–PEG fibrous mat reaches 0.033 W m<sup>–1</sup> K<sup>–1</sup>, signifying excellent thermal insulation properties of the fabricated electrospun mat. Infrared imaging reveals the effective thermal buffering effect of phase-change fiber mats and yarns when weaved onto cotton fabric under drastic temperature changes. Moreover, the fibrous mats show a water vapor transmission rate (WVTR) of 3735 ± 234 g m<sup>–2</sup> day<sup>–1</sup>, indicating high breathability, alongside thermal performance. These results position the proposed biomimetic fibrous material as a promising candidate for next-generation wearable textiles in the future that enhance personal thermal comfort, offering both performance and sustainability.2025-11-25T12:25:32ZDatasetMediainfo:eu-repo/semantics/publishedVersiondataset10.1021/acsami.5c20292.s002https://figshare.com/articles/media/Breathable_Thermally_Insulating_Phase-Change_Fibrous_Mat_and_Yarn_Inspired_by_Penguin_Feather_Microstructure_for_Personal_Thermal_Management/30705607CC BY-NC 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/307056072025-11-25T12:25:32Z
spellingShingle Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management
Madhurima Das (2036083)
Genetics
Molecular Biology
Evolutionary Biology
Developmental Biology
Inorganic Chemistry
Space Science
Chemical Sciences not elsewhere classified
thermal conductivity coefficient
specific temperature range
repeated thermal cycling
reducing carbon emissions
personal thermal management
penguin feather microstructure
infrared imaging reveals
incorporating peg improves
generation wearable textiles
excellent thermal stability
ensuring thermal comfort
effectively containing peg
drastic temperature changes
change fiber mats
89 j g
63 ± 0
13 ± 0
fibrous mats show
fabricated electrospun mat
conserving thermal energy
changeable fibrous mat
change fibrous mat
thermally insulating phase
alongside thermal performance
fibrous mat
energy crisis
unique morphology
structural integrity
results position
promising candidate
mechanical properties
growing challenges
global warming
30 cycles
033 w
status_str publishedVersion
title Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management
title_full Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management
title_fullStr Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management
title_full_unstemmed Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management
title_short Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management
title_sort Breathable, Thermally Insulating Phase-Change Fibrous Mat and Yarn Inspired by Penguin Feather Microstructure for Personal Thermal Management
topic Genetics
Molecular Biology
Evolutionary Biology
Developmental Biology
Inorganic Chemistry
Space Science
Chemical Sciences not elsewhere classified
thermal conductivity coefficient
specific temperature range
repeated thermal cycling
reducing carbon emissions
personal thermal management
penguin feather microstructure
infrared imaging reveals
incorporating peg improves
generation wearable textiles
excellent thermal stability
ensuring thermal comfort
effectively containing peg
drastic temperature changes
change fiber mats
89 j g
63 ± 0
13 ± 0
fibrous mats show
fabricated electrospun mat
conserving thermal energy
changeable fibrous mat
change fibrous mat
thermally insulating phase
alongside thermal performance
fibrous mat
energy crisis
unique morphology
structural integrity
results position
promising candidate
mechanical properties
growing challenges
global warming
30 cycles
033 w