Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.

<p>Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.</p>

محفوظ في:
التفاصيل البيبلوغرافية
المؤلف الرئيسي: Shahneela Pitafi (20454775) (author)
مؤلفون آخرون: Toni Anwar (19999011) (author), I Dewa Made Widia (20454778) (author), Zubair Sharif (17767086) (author), Boonsit Yimwadsana (614577) (author)
منشور في: 2024
الموضوعات:
الوسوم: إضافة وسم
لا توجد وسوم, كن أول من يضع وسما على هذه التسجيلة!
_version_ 1852024251870085120
author Shahneela Pitafi (20454775)
author2 Toni Anwar (19999011)
I Dewa Made Widia (20454778)
Zubair Sharif (17767086)
Boonsit Yimwadsana (614577)
author2_role author
author
author
author
author_facet Shahneela Pitafi (20454775)
Toni Anwar (19999011)
I Dewa Made Widia (20454778)
Zubair Sharif (17767086)
Boonsit Yimwadsana (614577)
author_role author
dc.creator.none.fl_str_mv Shahneela Pitafi (20454775)
Toni Anwar (19999011)
I Dewa Made Widia (20454778)
Zubair Sharif (17767086)
Boonsit Yimwadsana (614577)
dc.date.none.fl_str_mv 2024-12-19T18:32:21Z
dc.identifier.none.fl_str_mv 10.1371/journal.pone.0313890.t004
dc.relation.none.fl_str_mv https://figshare.com/articles/dataset/Overall_comparison_of_proposed_enhanced_DBSCAN_with_other_variants_of_DBSCAN_/28064488
dc.rights.none.fl_str_mv CC BY 4.0
info:eu-repo/semantics/openAccess
dc.subject.none.fl_str_mv Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
produce similar results
precise activity classification
manhattan distance formula
human activity recognition
comparative techniques failed
art techniques found
based spatial clustering
traditional dbscan algorithm
proposed model achieved
proposed model
subsequent clustering
model utilizes
varying densities
trained inceptionv3
societal security
silhouette score
research enhances
research contributes
physical locations
minimal points
intrusions around
handling high
future researchers
feature extraction
existing density
epsilon values
enhanced dbscan
dimensionality reduction
dimensional data
determined using
detection accuracy
analysis reveals
dc.title.none.fl_str_mv Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.
dc.type.none.fl_str_mv Dataset
info:eu-repo/semantics/publishedVersion
dataset
description <p>Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.</p>
eu_rights_str_mv openAccess
id Manara_fff0daa7315cdfdaf274754106652239
identifier_str_mv 10.1371/journal.pone.0313890.t004
network_acronym_str Manara
network_name_str ManaraRepo
oai_identifier_str oai:figshare.com:article/28064488
publishDate 2024
repository.mail.fl_str_mv
repository.name.fl_str_mv
repository_id_str
rights_invalid_str_mv CC BY 4.0
spelling Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.Shahneela Pitafi (20454775)Toni Anwar (19999011)I Dewa Made Widia (20454778)Zubair Sharif (17767086)Boonsit Yimwadsana (614577)Science PolicySpace ScienceBiological Sciences not elsewhere classifiedMathematical Sciences not elsewhere classifiedInformation Systems not elsewhere classifiedproduce similar resultsprecise activity classificationmanhattan distance formulahuman activity recognitioncomparative techniques failedart techniques foundbased spatial clusteringtraditional dbscan algorithmproposed model achievedproposed modelsubsequent clusteringmodel utilizesvarying densitiestrained inceptionv3societal securitysilhouette scoreresearch enhancesresearch contributesphysical locationsminimal pointsintrusions aroundhandling highfuture researchersfeature extractionexisting densityepsilon valuesenhanced dbscandimensionality reductiondimensional datadetermined usingdetection accuracyanalysis reveals<p>Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.</p>2024-12-19T18:32:21ZDatasetinfo:eu-repo/semantics/publishedVersiondataset10.1371/journal.pone.0313890.t004https://figshare.com/articles/dataset/Overall_comparison_of_proposed_enhanced_DBSCAN_with_other_variants_of_DBSCAN_/28064488CC BY 4.0info:eu-repo/semantics/openAccessoai:figshare.com:article/280644882024-12-19T18:32:21Z
spellingShingle Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.
Shahneela Pitafi (20454775)
Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
produce similar results
precise activity classification
manhattan distance formula
human activity recognition
comparative techniques failed
art techniques found
based spatial clustering
traditional dbscan algorithm
proposed model achieved
proposed model
subsequent clustering
model utilizes
varying densities
trained inceptionv3
societal security
silhouette score
research enhances
research contributes
physical locations
minimal points
intrusions around
handling high
future researchers
feature extraction
existing density
epsilon values
enhanced dbscan
dimensionality reduction
dimensional data
determined using
detection accuracy
analysis reveals
status_str publishedVersion
title Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.
title_full Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.
title_fullStr Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.
title_full_unstemmed Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.
title_short Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.
title_sort Overall comparison of proposed enhanced DBSCAN with other variants of DBSCAN.
topic Science Policy
Space Science
Biological Sciences not elsewhere classified
Mathematical Sciences not elsewhere classified
Information Systems not elsewhere classified
produce similar results
precise activity classification
manhattan distance formula
human activity recognition
comparative techniques failed
art techniques found
based spatial clustering
traditional dbscan algorithm
proposed model achieved
proposed model
subsequent clustering
model utilizes
varying densities
trained inceptionv3
societal security
silhouette score
research enhances
research contributes
physical locations
minimal points
intrusions around
handling high
future researchers
feature extraction
existing density
epsilon values
enhanced dbscan
dimensionality reduction
dimensional data
determined using
detection accuracy
analysis reveals