يعرض 1 - 20 نتائج من 2,098 نتيجة بحث عن '(((( algorithm where function ) OR ( algorithm steps function ))) OR ( algorithm python function ))', وقت الاستعلام: 0.35s تنقيح النتائج
  1. 1

    Python implementation of the Trajectory Adaptive Multilevel Sampling algorithm for rare events and improvements حسب Pascal Wang (10130612)

    منشور في 2021
    "…In `main.py`, the parameters for the TAMS algorithm are specified (trajectory time, time step, score function, number of particles, type of score threshold, maximum number of iterations, noise level etc.). …"
  2. 2
  3. 3

    <b>Opti2Phase</b>: Python scripts for two-stage focal reducer حسب Morgan Najera (21540776)

    منشور في 2025
    "…</li></ul><p dir="ltr">The scripts rely on the following Python packages. Where available, repository links are provided:</p><ol><li><b>NumPy</b>, version 1.22.1</li><li><b>SciPy</b>, version 1.7.3</li><li><b>PyGAD</b>, version 3.0.1 — https://pygad.readthedocs.io/en/latest/#</li><li><b>bees-algorithm</b>, version 1.0.2 — https://pypi.org/project/bees-algorithm</li><li><b>KrakenOS</b>, version 1.0.0.19 — https://github.com/Garchupiter/Kraken-Optical-Simulator</li><li><b>matplotlib</b>, version 3.5.2</li></ol><p dir="ltr">All scripts are modular and organized to reflect the design stages described in the manuscript.…"
  4. 4

    An expectation-maximization algorithm for finding noninvadable stationary states. حسب Robert Marsland (8616483)

    منشور في 2020
    "…<p><i>(a)</i> Noninvadable states by definition can only exist in the region Ω of resource space where the growth rate <i>dN</i><sub><i>i</i></sub>/<i>dt</i> of each species <i>i</i> is zero or negative. …"
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19
  20. 20

    If datasets are small and/or noisy, linear-regression-based algorithms for identifying functional groups outperform more complex versions. حسب Yuanchen Zhao (12905580)

    منشور في 2024
    "…More specifically, we plot the <i>R</i><sup>2</sup> of the best linear model minus the <i>R</i><sup>2</sup> of the best quadratic, where “best” refers to the model identified by the corresponding Metropolis algorithm over its finite runtime (10000 steps). …"