بدائل البحث:
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
based function » based functional (توسيع البحث), basis function (توسيع البحث), basis functions (توسيع البحث)
algorithm etc » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithm a (توسيع البحث)
algorithm python » algorithm within (توسيع البحث), algorithms within (توسيع البحث), algorithm both (توسيع البحث)
based function » based functional (توسيع البحث), basis function (توسيع البحث), basis functions (توسيع البحث)
algorithm etc » algorithm _ (توسيع البحث), algorithm b (توسيع البحث), algorithm a (توسيع البحث)
-
1
Python implementation of the Trajectory Adaptive Multilevel Sampling algorithm for rare events and improvements
منشور في 2021"…In `main.py`, the parameters for the TAMS algorithm are specified (trajectory time, time step, score function, number of particles, type of score threshold, maximum number of iterations, noise level etc.). …"
-
2
-
3
<b>Rethinking neighbourhood boundaries for urban planning: A data-driven framework for perception-based delineation</b>
منشور في 2025"…</p><h2>Project Structure</h2><pre><pre>Perception_based_neighbourhoods/<br>├── raw_data/<br>│ ├── ET_cells_glasgow/ # Glasgow grid cells for analysis<br>│ └── glasgow_open_built/ # Built area boundaries<br>├── svi_module/ # Street View Image processing<br>│ ├── svi_data/<br>│ │ ├── svi_info.csv # Image metadata (output)<br>│ │ └── images/ # Downloaded images (output)<br>│ ├── get_svi_data.py # Download street view images<br>│ └── trueskill_score.py # Generate TrueSkill scores<br>├── perception_module/ # Perception prediction<br>│ ├── output_data/<br>│ │ └── glasgow_perception.nc # Perception scores (demo data)<br>│ ├── trained_models/ # Pre-trained models<br>│ ├── pred.py # Predict perceptions from images<br>│ └── readme.md # Training instructions<br>└── cluster_module/ # Neighbourhood clustering<br> ├── output_data/<br> │ └── clusters.shp # Final neighbourhood boundaries<br> └── cluster_perceptions.py # Clustering algorithm<br></pre></pre><h2>Prerequisites</h2><ul><li>Python 3.8 or higher</li><li>GDAL/OGR libraries (for geospatial processing)</li></ul><h2>Installation</h2><ol><li>Clone this repository:</li></ol><p dir="ltr">Download the zip file</p><pre><pre>cd perception_based_neighbourhoods<br></pre></pre><ol><li>Install required dependencies:</li></ol><pre><pre>pip install -r requirements.txt<br></pre></pre><p dir="ltr">Required libraries include:</p><ul><li>geopandas</li><li>pandas</li><li>numpy</li><li>xarray</li><li>scikit-learn</li><li>matplotlib</li><li>torch (PyTorch)</li><li>efficientnet-pytorch</li></ul><h2>Usage Guide</h2><h3>Step 1: Download Street View Images</h3><p dir="ltr">Download street view images based on the Glasgow grid sampling locations.…"
-
4
GameOfLife Prediction Dataset
منشور في 2025"…<p dir="ltr">The GameOfLife dataset is an algorithmically generated dataset based off John Horton Conway's Game of Life. …"
-
5
CSPP instance
منشور في 2025"…</b></p><p dir="ltr">Its primary function is to create structured datasets that simulate container terminal operations, which can then be used for developing, testing, and benchmarking optimization algorithms (e.g., for yard stacking strategies, vessel stowage planning).…"
-
6
Expression vs genomics for predicting dependencies
منشور في 2024"…</p><p dir="ltr"><br></p><p dir="ltr">PerturbationInfo.csv: Additional drug annotations for the PRISM and GDSC17 datasets</p><p dir="ltr"><br></p><p dir="ltr">ApproximateCFE.hdf5: A set of Cancer Functional Event cell features based on CCLE data, adapted from Iorio et al. 2016 (10.1016/j.cell.2016.06.017)</p><p dir="ltr"><br></p><p dir="ltr">DepMapSampleInfo.csv: sample info from DepMap_public_19Q4 data, reproduced here as a convenience.…"