يعرض 1 - 12 نتائج من 12 نتيجة بحث عن '(( algorithm flow function ) OR ((( algorithm python function ) OR ( algorithm a function ))))~', وقت الاستعلام: 0.56s تنقيح النتائج
  1. 1

    S1 File - حسب Yuh-Chin T. Huang (17867207)

    منشور في 2024
    "…In this study, we developed a computerized algorithm using the python package (pdfplumber) and validated against clinicians’ interpretation. …"
  2. 2

    S1 Dataset - حسب Yuh-Chin T. Huang (17867207)

    منشور في 2024
    "…In this study, we developed a computerized algorithm using the python package (pdfplumber) and validated against clinicians’ interpretation. …"
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7

    Multidomain, Automated Photopatterning of DNA-functionalized Hydrogels (MAPDH). حسب Moshe Rubanov (7289156)

    منشور في 2024
    "…<b>B)</b> Pseudocode for MAPDH in Python. The algorithm takes as input the vials that will be flowed through the patterning chamber. …"
  8. 8

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</a></p><p dir="ltr">More information:</p><ul><li><a href="https://www.hatemedia.es/" rel="nofollow" target="_blank">https://www.hatemedia.es/</a> or contact: <a href="mailto:elias.said@unir.net" target="_blank">elias.said@unir.net</a></li><li>This algorithm is related to the hate/non-hate classification algorithm, also developed by the authors: <a href="https://github.com/esaidh266/Algorithm-for-detection-of-hate-speech-in-Spanish" target="_blank">https://github.com/esaidh266/Algorithm-for-detection-of-hate-speech-in-Spanish</a></li><li>This algorithm is related to the algorithm for classifying hate expressions by intensities in Spanish, also developed by the authors: <a href="https://github.com/esaidh266/Algorithm-for-classifying-hate-expressions-by-intensities-in-Spanish" target="_blank">https://github.com/esaidh266/Algorithm-for-classifying-hate-expressions-by-intensities-in-Spanish</a></li></ul><p></p>…"
  9. 9

    <b>AI for imaging plant stress in invasive species </b>(dataset from the article https://doi.org/10.1093/aob/mcaf043) حسب Erola Fenollosa (20977421)

    منشور في 2025
    "…<p dir="ltr">This dataset contains the data used in the article <a href="https://academic.oup.com/aob/advance-article/doi/10.1093/aob/mcaf043/8074229" rel="noreferrer" target="_blank">"Machine Learning and digital Imaging for Spatiotemporal Monitoring of Stress Dynamics in the clonal plant Carpobrotus edulis: Uncovering a Functional Mosaic</a>", which includes the complete set of collected leaf images, image features (predictors) and response variables used to train machine learning regression algorithms.…"
  10. 10

    Polygon vector map distortion for increasing the readability of one-to-many flow maps: data and codes حسب Laetitia Viau (14057463)

    منشور في 2023
    "…<p><br></p> <p><br></p> <p>All scripts to generate a one-to-many flow map (without distortion) are available in the compressed directory scripts.zip. …"
  11. 11

    An Ecological Benchmark of Photo Editing Software: A Comparative Analysis of Local vs. Cloud Workflows حسب Pierre-Alexis DELAROCHE (22092572)

    منشور في 2025
    "…Performance Profiling Algorithms Energy Measurement Methodology # Pseudo-algorithmic representation of measurement protocol def capture_energy_metrics(workflow_type: WorkflowEnum, asset_vector: List[PhotoAsset]) -> EnergyProfile: baseline_power = sample_idle_power_draw(duration=30) with PowerMonitoringContext() as pmc: start_timestamp = rdtsc() # Read time-stamp counter if workflow_type == WorkflowEnum.LOCAL: result = execute_local_pipeline(asset_vector) elif workflow_type == WorkflowEnum.CLOUD: result = execute_cloud_pipeline(asset_vector) end_timestamp = rdtsc() energy_profile = EnergyProfile( duration=cycles_to_seconds(end_timestamp - start_timestamp), peak_power=pmc.get_peak_consumption(), average_power=pmc.get_mean_consumption(), total_energy=integrate_power_curve(pmc.get_power_trace()) ) return energy_profile Statistical Analysis Framework Our analytical pipeline employs advanced statistical methodologies including: Variance Decomposition: ANOVA with nested factors for hardware configuration effects Regression Analysis: Generalized Linear Models (GLM) with log-link functions for energy modeling Temporal Analysis: Fourier transform-based frequency domain analysis of power consumption patterns Cluster Analysis: K-means clustering with Euclidean distance metrics for workflow classification Data Validation and Quality Assurance Measurement Uncertainty Quantification All energy measurements incorporate systematic and random error propagation analysis: Instrument Precision: ±0.1W for CPU power, ±0.5W for GPU power Temporal Resolution: 1ms sampling with Nyquist frequency considerations Calibration Protocol: NIST-traceable power standards with periodic recalibration Environmental Controls: Temperature-compensated measurements in climate-controlled facility Outlier Detection Algorithms Statistical outliers are identified using the Interquartile Range (IQR) method with Tukey's fence criteria (Q₁ - 1.5×IQR, Q₃ + 1.5×IQR). …"
  12. 12

    DataSheet1_Development of a Multilayer Deep Neural Network Model for Predicting Hourly River Water Temperature From Meteorological Data.docx حسب Reza Abdi (3636907)

    منشور في 2021
    "…We trained the LR and DNN algorithms on Google’s TensorFlow model using Keras artificial neural network library on Python. …"