يعرض 1 - 20 نتائج من 28 نتيجة بحث عن '(( algorithm step function ) OR ( algorithm python function ))~', وقت الاستعلام: 0.39s تنقيح النتائج
  1. 1
  2. 2

    Python implementation of the Trajectory Adaptive Multilevel Sampling algorithm for rare events and improvements حسب Pascal Wang (10130612)

    منشور في 2021
    "…In `main.py`, the parameters for the TAMS algorithm are specified (trajectory time, time step, score function, number of particles, type of score threshold, maximum number of iterations, noise level etc.). …"
  3. 3
  4. 4
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10

    BOFdat: Generating biomass objective functions for genome-scale metabolic models from experimental data حسب Jean-Christophe Lachance (6619307)

    منشور في 2019
    "…Despite its importance, no standardized computational platform is currently available to generate species-specific biomass objective functions in a data-driven, unbiased fashion. To fill this gap in the metabolic modeling software ecosystem, we implemented BOFdat, a Python package for the definition of a <b>B</b>iomass <b>O</b>bjective <b>F</b>unction from experimental <b>dat</b>a. …"
  11. 11

    Multidomain, Automated Photopatterning of DNA-functionalized Hydrogels (MAPDH). حسب Moshe Rubanov (7289156)

    منشور في 2024
    "…The algorithm incorporates a wash step between each round of patterning. …"
  12. 12

    Algoritmo de clasificación de expresiones de odio por tipos en español (Algorithm for classifying hate expressions by type in Spanish) حسب Daniel Pérez Palau (11097348)

    منشور في 2024
    "…</p><h2>Model Architecture</h2><p dir="ltr">The model is based on <code>pysentimiento/robertuito-base-uncased</code> with the following modifications:</p><ul><li>A dense classification layer was added over the base model</li><li>Uses input IDs and attention masks as inputs</li><li>Generates a multi-class classification with 5 hate categories</li></ul><h2>Dataset</h2><p dir="ltr"><b>HATEMEDIA Dataset</b>: Custom hate speech dataset with categorization by type:</p><ul><li><b>Labels</b>: 5 hate type categories (0-4)</li><li><b>Preprocessing</b>:</li><li>Null values ​​removed from text and labels</li><li>Reindexing and relabeling (original labels are adjusted by subtracting 1)</li><li>Exclusion of category 2 during training</li><li>Conversion of category 5 to category 2</li></ul><h2>Training Process</h2><h3>Configuration</h3><ul><li><b>Batch size</b>: 128</li><li><b>Epoches</b>: 5</li><li><b>Learning rate</b>: 2e-5 with 10% warmup steps</li><li><b>Early stopping</b> with patience=2</li><li><b>Class weights</b>: Balanced to handle class imbalance</li></ul><h3>Custom Metrics</h3><ul><li>Recall for specific classes (focus on class 2)</li><li>Precision for specific classes (focus on class 3)</li><li>F1-score (weighted)</li><li>AUC-PR</li><li>Recall at precision=0.6 (class 3)</li><li>Precision at recall=0.6 (class 2)</li></ul><h2>Evaluation Metrics</h2><p dir="ltr">The model is evaluated using:</p><ul><li>Macro recall, precision, and F1-score</li><li>One-vs-Rest AUC</li><li>Accuracy</li><li>Per-class metrics</li><li>Confusion matrix</li><li>Full classification report</li></ul><h2>Technical Features</h2><h3>Data Preprocessing</h3><ul><li><b>Tokenization</b>: Maximum length of 128 tokens (truncation and padding)</li><li><b>Encoding of labels</b>: One-hot encoding for multi-class classification</li><li><b>Data split</b>: 80% training, 10% validation, 10% testing</li></ul><h3>Optimization</h3><ul><li><b>Optimizer</b>: Adam with linear warmup scheduling</li><li><b>Loss function</b>: Categorical Crossentropy (from_logits=True)</li><li><b>Imbalance handling</b>: Class weights computed automatically</li></ul><h2>Requirements</h2><p dir="ltr">The following Python packages are required:</p><ul><li>TensorFlow</li><li>Transformers</li><li>scikit-learn</li><li>pandas</li><li>datasets</li><li>matplotlib</li><li>seaborn</li><li>numpy</li></ul><h2>Usage</h2><ol><li><b>Data format</b>:</li></ol><ul><li>CSV file or Pandas DataFrame</li><li>Required column name: <code>text</code> (string type)</li><li>Required column name: Data type label (integer type, 0-4) - optional for evaluation</li></ul><ol><li><b>Text preprocessing</b>:</li></ol><ul><li>Automatic tokenization with a maximum length of 128 tokens</li><li>Long texts will be automatically truncated</li><li>Handling of special characters, URLs, and emojis included</li></ul><ol><li><b>Label encoding</b>:</li></ol><ul><li>The model classifies hate speech into 5 categories (0-4)</li><li><code>0</code>: Political hatred: Expressions directed against individuals or groups based on political orientation.…"
  13. 13
  14. 14

    Data_Sheet_1_Processing Pipeline for Atlas-Based Imaging Data Analysis of Structural and Functional Mouse Brain MRI (AIDAmri).docx حسب Niklas Pallast (6796196)

    منشور في 2019
    "…Following a modular structure developed in Python scripting language, the pipeline integrates established and newly developed algorithms. …"
  15. 15

    Data_Sheet_2_Processing Pipeline for Atlas-Based Imaging Data Analysis of Structural and Functional Mouse Brain MRI (AIDAmri).pdf حسب Niklas Pallast (6796196)

    منشور في 2019
    "…Following a modular structure developed in Python scripting language, the pipeline integrates established and newly developed algorithms. …"
  16. 16
  17. 17
  18. 18

    Map Matching on Low Sampling Rate Trajectories Through Deep Inverse Reinforcement Learning and Multi Intention Modeling حسب Reza Safarzadeh (18072472)

    منشور في 2024
    "…</li><li>`plots`: Contains functions for generating plots.</li><li>`MIDIRL_MapMatching.ipynb`: Includes step-by-step instructions for training the model, testing it on sample data, visualizing the results, and evaluating its performance. …"
  19. 19

    Code and Data for 'Fabrication and testing of lensed fiber optic probes for distance sensing using common path low coherence interferometry' حسب Radu Stancu (21165068)

    منشور في 2025
    "…Distance Sensing</p><p dir="ltr">Code and data to demonstrate extracting distance sensing data from A-scans and to generate Fig. 8 using the algorithm described in Fig. 7. Functions to generate distance measurements are in 'distance_sensing_utilities.py' and an example of how to use this on data in the 'data' folder is in 'distance_sensing_example.py', which generates Fig 8. …"
  20. 20

    GameOfLife Prediction Dataset حسب David Towers (12857447)

    منشور في 2025
    "…This task is relatively simple for a human to do if a bit tedious, and should theoretically be simple for Machine Learning algorithms. Each cells's state is calculated based off the number of alive neighbour's in the previous step. …"