بدائل البحث:
improve optimization » iterative optimization (توسيع البحث), model optimization (توسيع البحث), dose optimization (توسيع البحث)
process optimization » model optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
a process » _ process (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
improve optimization » iterative optimization (توسيع البحث), model optimization (توسيع البحث), dose optimization (توسيع البحث)
process optimization » model optimization (توسيع البحث)
binary based » library based (توسيع البحث), linac based (توسيع البحث), binary mask (توسيع البحث)
a process » _ process (توسيع البحث)
binary a » binary _ (توسيع البحث), binary b (توسيع البحث), hilary a (توسيع البحث)
-
1
-
2
Proposed Algorithm.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
3
-
4
-
5
Comparisons between ADAM and NADAM optimizers.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
6
Optimized Bayesian regularization-back propagation neural network using data-driven intrusion detection system in Internet of Things
منشور في 2025"…Hence, Binary Black Widow Optimization Algorithm (BBWOA) is proposed in this manuscript to improve the BRBPNN classifier that detects intrusion precisely. …"
-
7
An Example of a WPT-MEC Network.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
8
-
9
Analysis and design of algorithms for the manufacturing process of integrated circuits
منشور في 2023"…Based on this new representation, we proposed and evaluated other approximate methods, including a greedy algorithm and a genetic algorithm that improve the state-of-the-art results for test cases usually used in the literature. …"
-
10
-
11
Related Work Summary.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
12
Simulation parameters.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
13
Training losses for N = 10.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
14
Normalized computation rate for N = 10.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
15
Summary of Notations Used in this paper.
منشور في 2025"…To enhance the offloading decision-making process, the algorithm incorporates the Newton-Raphson method for fast and efficient optimization of the computation rate under energy constraints. …"
-
16
-
17
Parameter settings.
منشور في 2024"…<div><p>Differential Evolution (DE) is widely recognized as a highly effective evolutionary algorithm for global optimization. …"
-
18
-
19
GSE96058 information.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"
-
20
The performance of classifiers.
منشور في 2024"…Subsequently, feature selection was conducted using ANOVA and binary Particle Swarm Optimization (PSO). During the analysis phase, the discriminative power of the selected features was evaluated using machine learning classification algorithms. …"