بدائل البحث:
process optimization » model optimization (توسيع البحث)
step optimization » after optimization (توسيع البحث), swarm optimization (توسيع البحث), based optimization (توسيع البحث)
phage process » phase process (توسيع البحث), peace process (توسيع البحث), damage process (توسيع البحث)
binary phage » binary image (توسيع البحث), binary edge (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data step » data set (توسيع البحث)
process optimization » model optimization (توسيع البحث)
step optimization » after optimization (توسيع البحث), swarm optimization (توسيع البحث), based optimization (توسيع البحث)
phage process » phase process (توسيع البحث), peace process (توسيع البحث), damage process (توسيع البحث)
binary phage » binary image (توسيع البحث), binary edge (توسيع البحث)
binary data » primary data (توسيع البحث), dietary data (توسيع البحث)
data step » data set (توسيع البحث)
-
1
-
2
-
3
-
4
-
5
-
6
-
7
-
8
-
9
The Pseudo-Code of the IRBMO Algorithm.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
10
IRBMO vs. meta-heuristic algorithms boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
11
IRBMO vs. feature selection algorithm boxplot.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
12
-
13
-
14
IRBMO vs. variant comparison adaptation data.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
15
Pseudo Code of RBMO.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
16
P-value on CEC-2017(Dim = 30).
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
17
Memory storage behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
18
Elite search behavior.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
19
Description of the datasets.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"
-
20
S and V shaped transfer functions.
منشور في 2025"…To adapt to the feature selection problem, we convert the continuous optimization algorithm to binary form via transfer function, which further enhances the applicability of the algorithm. …"