يعرض 1 - 20 نتائج من 32 نتيجة بحث عن 'arbitrary number algorithm', وقت الاستعلام: 0.26s تنقيح النتائج
  1. 1
  2. 2

    Supplementary file 1_Optimizing quantum convolutional neural network architectures for arbitrary data dimension.pdf حسب Changwon Lee (20812727)

    منشور في 2025
    "…The number of input qubits determines the dimensions (i.e., the number of features) of the input data that can be processed, restricting the applicability of QCNN algorithms to real-world data. …"
  3. 3
  4. 4
  5. 5
  6. 6

    Environment ConFIGuration Information. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  7. 7

    Results of ablation experiment. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  8. 8

    Comparison diagram of mAP50. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  9. 9

    Improved YOLOv8s. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  10. 10

    YOLOv5s. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  11. 11

    Partial Training Images of the Dataset. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  12. 12

    LKA Network Structure. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  13. 13

    Comparison diagram of detection accuracy. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  14. 14

    AKConv module structure. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  15. 15

    Target Sample Statistics of VisDrone2019. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  16. 16

    YOLOv9c. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  17. 17

    Bi-SCDown-FPN Structure Diagram. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  18. 18

    Parameter Settings. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  19. 19

    YOLOv7tiny. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"
  20. 20

    LSKA Network Structure. حسب Xinwei Wang (352488)

    منشور في 2025
    "…AKConv allows for convolution kernels with arbitrary numbers and sampling shapes, enabling convolution operations to more precisely adapt to targets at different locations, thereby achieving more efficient feature extraction. …"