يعرض 1 - 20 نتائج من 20 نتيجة بحث عن 'binary each model optimization algorithm', وقت الاستعلام: 0.19s تنقيح النتائج
  1. 1

    <i>hi</i>PRS algorithm process flow. حسب Michela C. Massi (14599915)

    منشور في 2023
    "…<b>(B)</b> Focusing on the positive class only, the algorithm exploits FIM (<i>apriori</i> algorithm) to build a list of candidate interactions of any desired order, retaining those that have an empirical frequency above a given threshold <i>δ</i>. …"
  2. 2
  3. 3

    ROC curve for binary classification. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…The model further showed superior results on binary classification compared with existing methods. …"
  4. 4

    Confusion matrix for binary classification. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…The model further showed superior results on binary classification compared with existing methods. …"
  5. 5
  6. 6
  7. 7

    Summary of existing CNN models. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…The model further showed superior results on binary classification compared with existing methods. …"
  8. 8
  9. 9

    Analysis and design of algorithms for the manufacturing process of integrated circuits حسب Sonia Fleytas (16856403)

    منشور في 2023
    "…Additionally, the results obtained from our new ILP model indicate that our genetic algorithm results are very close to the optimal values.…"
  10. 10
  11. 11
  12. 12
  13. 13
  14. 14

    Testing results for classifying AD, MCI and NC. حسب Nicodemus Songose Awarayi (18414494)

    منشور في 2024
    "…The model further showed superior results on binary classification compared with existing methods. …"
  15. 15

    Seed mix selection model حسب Bethanne Bruninga-Socolar (10923639)

    منشور في 2022
    "…</p> <p>  </p> <p>We applied the seed mix selection model using a binary genetic algorithm to select seed mixes (R package ‘GA’; Scrucca 2013; Scrucca 2017). …"
  16. 16

    Natural language processing for automated quantification of bone metastases reported in free-text bone scintigraphy reports حسب Olivier Q. Groot (9370461)

    منشور في 2020
    "…The aim of this study was to develop a natural language processing (NLP) algorithm for binary classification (single metastasis versus two or more metastases) in bone scintigraphy reports of patients undergoing surgery for bone metastases.…"
  17. 17

    DataSheet_1_Multi-Parametric MRI-Based Radiomics Models for Predicting Molecular Subtype and Androgen Receptor Expression in Breast Cancer.docx حسب Yuhong Huang (115702)

    منشور في 2021
    "…We then built 120 diagnostic models using distinct classification algorithms and feature sets divided by MRI sequences and selection strategies to predict molecular subtype and AR expression of breast cancer in the testing dataset of leave-one-out cross-validation (LOOCV). …"
  18. 18

    DataSheet_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx حسب Massaine Bandeira e Sousa (7866242)

    منشور في 2024
    "…Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …"
  19. 19

    Table_1_Near infrared spectroscopy for cooking time classification of cassava genotypes.docx حسب Massaine Bandeira e Sousa (7866242)

    منشور في 2024
    "…Classification of genotypes was carried out using the K-nearest neighbor algorithm (KNN) and partial least squares (PLS) models. …"
  20. 20

    Machine Learning-Ready Dataset for Cytotoxicity Prediction of Metal Oxide Nanoparticles حسب Soham Savarkar (21811825)

    منشور في 2025
    "…</p><p dir="ltr">Encoding: Categorical variables such as surface coating and cell type were grouped into logical classes and label-encoded to enable model compatibility.</p><p dir="ltr"><b>Applications and Model Compatibility:</b></p><p dir="ltr">The dataset is optimized for use in supervised learning workflows and has been tested with algorithms such as:</p><p dir="ltr">Gradient Boosting Machines (GBM),</p><p dir="ltr">Support Vector Machines (SVM-RBF),</p><p dir="ltr">Random Forests, and</p><p dir="ltr">Principal Component Analysis (PCA) for feature reduction.…"