-
1
-
2
-
3
-
4
-
5
Comparison of execution times between the two methods.
منشور في 2022"…<p>The Python module <i>timeit</i> was used to check the execution time required to convert the whole data set 500 times on an Intel<sup>®</sup> Core<sup>™</sup> i3-4030U CPU with a 1.90GHz clock speed.…"
-
6
-
7
-
8
FeO<sub>s</sub>: An Open-Source Framework for Equations of State and Classical Density Functional Theory
منشور في 2023"…Equations of state can be implemented in Rust, yielding performant code, or as a Python class, which is useful for prototyping and with less emphasis on execution speed. …"
-
9
Python implementation of the Trajectory Adaptive Multilevel Sampling algorithm for rare events and improvements
منشور في 2021"…The `main.py` file is the file to be executed using a command of the type `python main.py`. …"
-
10
Behavioural machine activity for benign and malicious Win7 64-bit executables
منشور في 2024"…</li><li>The virtual machine used 2GB RAM, 25 GB storage, and a single CPU core running 64-bit Windows 7.</li></ul><p><br></p><p><strong>Dataset 2:</strong></p><ul><li>filename = "data_2.csv"</li><li>2345 benign samples </li><li>2286 malicious samples</li><li>Up to 20 seconds execution per file</li><li>The data was collected in a VirtualBox[1] virtual machine using Cuckoo Sandbox[2] with a custom package written in the python library, Psutil[4] to collect the machine activity data. …"
-
11
Table_1_SNPAAMapper-Python: A highly efficient genome-wide SNP variant analysis pipeline for Next-Generation Sequencing data.DOCX
منشور في 2022"…The Python script can classify variants by region in 53 s compared to 166 s for the Perl script in a test sample run on a Latitude 7480 Desktop computer with 8GB RAM and an Intel Core i5-6300 CPU @ 2.4Ghz. …"
-
12
Data_Sheet_1_SNPAAMapper-Python: A highly efficient genome-wide SNP variant analysis pipeline for Next-Generation Sequencing data.docx
منشور في 2022"…The Python script can classify variants by region in 53 s compared to 166 s for the Perl script in a test sample run on a Latitude 7480 Desktop computer with 8GB RAM and an Intel Core i5-6300 CPU @ 2.4Ghz. …"
-
13
-
14
FULL fingerprint calculation times for docking poses of small molecule ligands of various sizes (guanidine, ibuprofen, and sildenafil) to guanidine III riboswitch (RNA with 39 resi...
منشور في 2022"…<p>The fingeRNAt executed as a python script and as a singularity image. …"
-
15
Auxiliary and validation data for SAGEA-fluid
منشور في 2025"…Building upon the core framework and data post-processing capabilities of SAGEA, SAGEA-fluid supports the integration of multi-source surface fluid datasets for geophysical effect estimation. …"
-
16
NanoDB: Research Activity Data Management System
منشور في 2024"…Cross-Platform Compatibility: Works on Windows, macOS, and Linux. In a Python environment or as an executable. Ease of Implementation: Using the flexibility of the Python framework all the data setup and algorithm can me modified and new functions can be easily added. …"
-
17
Expanding Adverse Outcome Pathway knowledge by creating AOP-Wiki RDF with semantic annotations to facilitate risk assessment of chemicals.
منشور في 2019"…We parsed the AOP-Wiki knowledge with Python 3.5 and the ElementTree XML API and converted it into a semantic web RDF format, which allows for accurate description with ontological annotations, including the AOPO, CHEMINF, and Dublin Core. …"
-
18
Least Bridges Graphs
منشور في 2023"…</li><li><ul><li>The provided functions are for execution within the Mathematica notebook environment. …"
-
19
Data and code for: Automatic fish scale analysis
منشور في 2025"…</p><h3>Includeed in this repository:</h3><ul><li><b>Raw data files:</b></li><li><code>comparison_all_scales.csv</code> – comparison_all_scales.csv - manually verified vs. automated measurements of 1095 coregonid scales</li></ul><ul><li><ul><li><code>Validation_data.csv</code> – manually measured scale data under binocular</li><li><code>Parameter_correction_numeric.csv</code> – calibration data (scale radius vs. fish length/weight)</li></ul></li><li><b>Statistical results:</b></li><li><ul><li><code>comparison_stats_core_variables.csv</code> – verification statistics (bias, relative error, limits of agreement)</li><li><code>Validation_statistics.csv</code> – summary statistics and model fits (manual vs. automated)</li></ul></li><li><b>Executable script (not GUI):</b></li><li><ul><li><code>Algorithm.py</code> – core processing module for scale feature extraction<br>→ <i>Note: The complete Coregon Analyzer application (incl. …"
-
20
Dataset for: Phylotranscriptomics reveals the phylogeny of Asparagales and the evolution of allium flavor biosynthesis, Nature Communications,DOI:10.1038/s41467-024-53943-6
منشور في 2024"…</p><p dir="ltr">For paired-end reads:</p><p dir="ltr"><i>python2 filter_fq.py taxonID_1.fq.gz taxonID_2.fq.gz Magnoliophyta both num_cores output_dir clean</i></p><p dir="ltr">For single-end reads:</p><p dir="ltr"><i>python2 filter_fq.py taxonID_1.fq.gz Magnoliophyta both num_cores output_dir clean</i></p><p><br></p><p dir="ltr"><b>Step 2: Transcriptome assembly using Trinity (https://github.com/trinityrnaseq/trinityrnaseq)</b></p><p dir="ltr"><i>python2 trinity_wrapper.py taxonID_1.overep_filtered.fq.gz taxonID_2.overep_filtered.fq.gz taxonID num_cores max_memory_GB stranded output_dir</i></p><p><br></p><p dir="ltr"><b>Step 3: Get the longest transcript in each gene from the Trinity assembly and translate transcripts to CDS and PEP sequences</b></p><p dir="ltr">Execute the script <i>get_longest_isoform_seq_per_trinity_gene.pl</i> to get the longest transcripts.…"