Search alternatives:
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search)
python function » protein function (Expand Search)
algorithm loss » algorithms less (Expand Search), algorithm allows (Expand Search), algorithm shows (Expand Search)
algorithm both » algorithm blood (Expand Search), algorithm b (Expand Search), algorithm etc (Expand Search)
both function » body function (Expand Search), growth function (Expand Search), beach function (Expand Search)
algorithm python » algorithm within (Expand Search), algorithms within (Expand Search)
python function » protein function (Expand Search)
algorithm loss » algorithms less (Expand Search), algorithm allows (Expand Search), algorithm shows (Expand Search)
algorithm both » algorithm blood (Expand Search), algorithm b (Expand Search), algorithm etc (Expand Search)
both function » body function (Expand Search), growth function (Expand Search), beach function (Expand Search)
-
1
-
2
-
3
-
4
EFGs: A Complete and Accurate Implementation of Ertl’s Functional Group Detection Algorithm in RDKit
Published 2025“…In this paper, a new RDKit/Python implementation of the algorithm is described, that is both accurate and complete. …”
-
5
-
6
-
7
-
8
-
9
An expectation-maximization algorithm for finding noninvadable stationary states.
Published 2020“…<i>(c)</i> Pseudocode for self-consistently computing <b>R</b>* and , which is identical to standard expectation-maximization algorithms employed for problems with latent variables in machine learning.…”
-
10
-
11
-
12
-
13
-
14
Results of the application of different clustering algorithms to average functional connectivity from healthy subjects.
Published 2023“…<p>A) Resulting cluster inertia from applying the k-means algorithm described in the methods to empirical averaged functional connectivity from healthy subjects, with different numbers of clusters. …”
-
15
Comparison of deconvolution and optimization algorithms on a batch of data.
Published 2021“…Output is given by the vascular response, measured as the change in speed of red blood cells flowing inside a capillary proximal to the recorded neuronal activation (in yellow, right panel). Both experimental data have been resampled at 50ms and used to compute a set of TFs (in orange) either with direct deconvolution approaches (Fourier or Toeplitz methods, middle-upper panel TFs) or with 1-Γ function optimization performed by 3 different algorithms (middle-lower panel TFs). …”
-
16
-
17
Search Algorithms and Loss Functions for Bayesian Clustering
Published 2022“…<p>We propose a randomized greedy search algorithm to find a point estimate for a random partition based on a loss function and posterior Monte Carlo samples. …”
-
18
-
19
Bayesian-frequentist Hybrid Inference in Applications with Small Sample Sizes
Published 2022Subjects: -
20