Showing 1 - 10 results of 10 for search '(( binary image process optimization algorithm ) OR ( binary image based optimization algorithm ))', query time: 0.35s Refine Results
  1. 1

    A* Path-Finding Algorithm to Determine Cell Connections by Max Weng (22327159)

    Published 2025
    “…</p><p dir="ltr">Astrocytes were dissociated from E18 mouse cortical tissue, and image data were processed using a Cellpose 2.0 model to mask nuclei. …”
  2. 2
  3. 3
  4. 4

    Dataset 1: Zip file containing the figures of the presented methods and results in jpeg files by Suchismita Behera (22027316)

    Published 2025
    “…<p dir="ltr">Figures represented here illustrates the <b>metaheuristic-based band selection framework</b> for hyperspectral image classification using <b>Binary Jaya Algorithm enhanced with a mutation operator</b> to improve population diversity and avoid premature convergence. …”
  5. 5
  6. 6

    Melanoma Skin Cancer Detection Using Deep Learning Methods and Binary GWO Algorithm by Hussein Ali Bardan (21976208)

    Published 2025
    “…This strategy </p><p dir="ltr">not only improves detection efficiency and accuracy but also supports early diagnosis and treatment planning, </p><p dir="ltr">leading to better patient outcomes. By leveraging the binary GWO algorithm to optimize the feature selection </p><p dir="ltr">process and CNNs for image classification, the proposed approach reduces computational costs while increasing </p><p dir="ltr">classification accuracy. …”
  7. 7
  8. 8

    Flowchart scheme of the ML-based model. by Noshaba Qasmi (20405009)

    Published 2024
    “…<b>I)</b> Testing data consisting of 20% of the entire dataset. <b>J)</b> Optimization of hyperparameter tuning. <b>K)</b> Algorithm selection from all models. …”
  9. 9

    Steps in the extraction of 14 coordinates from the CT slices for the curved MPR. by Linus Woitke (22783534)

    Published 2025
    “…Protruding paths are then eliminated using graph-based optimization algorithms, as demonstrated in f). …”
  10. 10

    Supplementary file 1_Comparative evaluation of fast-learning classification algorithms for urban forest tree species identification using EO-1 hyperion hyperspectral imagery.docx by Veera Narayana Balabathina (22518524)

    Published 2025
    “…</p>Methods<p>Thirteen supervised classification algorithms were comparatively evaluated, encompassing traditional spectral/statistical classifiers—Maximum Likelihood, Mahalanobis Distance, Minimum Distance, Parallelepiped, Spectral Angle Mapper (SAM), Spectral Information Divergence (SID), and Binary Encoding—and machine learning algorithms including Decision Tree (DT), K-Nearest Neighbor (KNN), Support Vector Machine (SVM), Random Forest (RF), and Artificial Neural Network (ANN). …”