Showing 1 - 7 results of 7 for search 'binary data driven optimization algorithm*', query time: 0.25s Refine Results
  1. 1
  2. 2

    Event-driven data flow processing. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  3. 3

    Flow diagram of the proposed model. by Uğur Ejder (22683228)

    Published 2025
    “…Local Interpretable Model-agnostic Explanations (LIME) were applied to improve interpretability. Across all algorithm models, LR–ABC hybrids outperformed their baseline models (e.g., Random Forest: 85.2% → 91.36% accuracy). …”
  4. 4

    Confusion matrix. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  5. 5

    Parameter settings. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  6. 6

    Dynamic resource allocation process. by Yixian Wen (12201388)

    Published 2025
    “…Subsequently, we implement an optimal binary tree decision-making algorithm, grounded in dynamic programming, to achieve precise allocation of elastic resources within data streams, significantly bolstering resource utilization. …”
  7. 7

    Image 1_A multimodal AI-driven framework for cardiovascular screening and risk assessment in diverse athletic populations: innovations in sports cardiology.png by Minjin Guo (22751300)

    Published 2025
    “…</p>Results and Discussion<p>Experimental evaluation across varied athlete cohorts demonstrates superior performance in risk stratification accuracy, diagnostic plausibility, and model transparency compared to traditional screening algorithms. This multimodal framework not only advances the fidelity of cardiovascular screening in athletic populations but also establishes a scalable and principled foundation for integrating computational diagnostics with real-world cardiological assessment practices.…”