Showing 1 - 20 results of 37,502 for search '(((( ((i larger) OR (a large)) decrease ) OR ( c large decrease ))) OR ( c numbers increased ))*', query time: 1.33s Refine Results
  1. 1

    Data from: Colony losses of stingless bees increase in agricultural areas, but decrease in forested areas by Malena Sibaja Leyton (18400983)

    Published 2025
    “…</p><p><br></p><p dir="ltr">#METADATA</p><p dir="ltr">#'data.frame': 472 obs. of 28 variables:</p><p dir="ltr"> #$ ID: Factor variable; a unique identity for the response to the survey</p><p dir="ltr"> #$ Year: Factor variable; six factors available (2016, 2017, 2018, 2019, 2020, 2021) representing the year for the response to the survey</p><p dir="ltr"> #$ N_dead_annual: Numeric variable; representing the number of colonies annually lost</p><p dir="ltr">#$ N_alive_annual: Numeric variable; representing the number of colonies annually alive</p><p dir="ltr"> #$ N_dead_dry: Numeric variable; representing the number of colonies lost during the dry season</p><p dir="ltr">#$ N_alive_dry: Numeric variable; representing the number of colonies alive during the dry season</p><p dir="ltr"> #$ N_dead_rainy: Numeric variable; representing the number of colonies lost during the rainy season</p><p dir="ltr">#$ N_alive_rainy: Numeric variable; representing the number of colonies alive during the rainy season</p><p dir="ltr"> #$ Education: Factor variable; four factors are available ("Self-taught","Learned from another melip","Intro training","Formal tech training"), representing the training level in meliponiculture</p><p dir="ltr"> #$ Operation_Size: Numeric variable; representing the number of colonies managed by the participant (in n)</p><p dir="ltr"> #$ propAgri: Numeric variable; representing the percentage of agricultural area surrounding the meliponary (in %)</p><p dir="ltr"> #$ propForest: Numeric variable; representing the percentage of forested area surrounding the meliponary (in %)</p><p dir="ltr">#$ temp.avg_annual: Numeric variable; representing the average annual temperature (in ºC)</p><p dir="ltr">#$ precip_annual_sum: Numeric variable; representing the total accumulated precipitation (in mm)</p><p dir="ltr">#$ precip_Oct_March_sum: Numeric variable; representing the total accumulated precipitation between October to March (in mm)</p><p dir="ltr">#$ precip_Apri_Sept_sum: Numeric variable; representing the total accumulated precipitation between April to September (in mm)</p><p dir="ltr">#$ temp.avg_Oct_March: Numeric variable; representing the total accumulated precipitation between October to March (in ºC)</p><p dir="ltr">#$ temp.avg_Apri_Sept: Numeric variable; representing the total accumulated precipitation between April to September (in ºC)</p><p dir="ltr"> #$ Importance_dead: Factor variable; three factors are available Normal","High","Very high"), representing the perception of the significance of annual colony losses</p><p dir="ltr"> #$ Climatic_environmental: Binary variable; representing if the participant considered climatic and environmental problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr"> #$ Contamination: Binary variable; representing if the participant considered contamination problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr"> #$ Nutritional: Binary variable; representing if the participant considered nutritional problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Sanitary: Binary variable; representing if the participant considered sanitary problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Queen: Binary variable; representing if the participant considered queen problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Time: Binary variable; representing if the participant considered time problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Economic: Binary variable; representing if the participant considered economic problems as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Attacks: Binary variable; representing if the participant considered time attacks as a potential driver (1) or not (0) of their annual colony losses</p><p dir="ltr">#$ Swarming: Binary variable; representing if the participant considered swarming problems as a potential driver (1) or not (0) of their annual colony losses</p><p><br></p>…”
  2. 2
  3. 3
  4. 4

    In superadditive networks, more enhancers decrease noise and fidelity. by Alvaro Fletcher (15675430)

    Published 2023
    “…Increasing binding site numbers leads to less noise in gene expression.…”
  5. 5
  6. 6
  7. 7
  8. 8
  9. 9
  10. 10
  11. 11

    The number of expected vaccinations decreases with the expected vaccination time, whereas the peak of infections increases. by Simon K. Schnyder (16632244)

    Published 2023
    “…Brighter colours indicate higher 〈<i>s</i>(<i>t</i><sub><i>v</i></sub>)〉. Note the nonlinear increase of <i>n</i> on the y-axis. C) Relatedly, we show the peak of infections max<sub><i>t</i></sub>(<i>i</i>(<i>t</i>)) as a heat map as function of the expected vaccination time 〈<i>t</i><sub><i>v</i></sub>〉 for the same range of vaccine arrival distributions <i>p</i><sub><i>n</i></sub> as in B). …”
  12. 12
  13. 13

    The introduction of mutualisms into assembled communities increases their connectance and complexity while decreasing their richness. by Gui Araujo (22170819)

    Published 2025
    “…(C) Mutualism also promotes an increase in network connectance when introduced into assembled communities, while stopping mutualistic interactions from entering an assembled system slowly decreases it. …”
  14. 14
  15. 15
  16. 16
  17. 17
  18. 18
  19. 19

    Large Decreases in Tailpipe Criteria Pollutant Emissions from the U.S. Light-Duty Vehicle Fleet Expected in 2020–2040 by Rachael H. Dolan (17918706)

    Published 2024
    “…Reductions in CO<sub>2</sub> emissions follow a similar pattern. Large decreases in criteria pollutant and CO<sub>2</sub> emissions from light duty vehicles lie ahead.…”
  20. 20

    Large Decreases in Tailpipe Criteria Pollutant Emissions from the U.S. Light-Duty Vehicle Fleet Expected in 2020–2040 by Rachael H. Dolan (17918706)

    Published 2024
    “…Reductions in CO<sub>2</sub> emissions follow a similar pattern. Large decreases in criteria pollutant and CO<sub>2</sub> emissions from light duty vehicles lie ahead.…”