Search alternatives:
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nm decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 step » _ step (Expand Search), a step (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
step decrease » sizes decrease (Expand Search), teer decrease (Expand Search), we decrease (Expand Search)
nm decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
ng decrease » nn decrease (Expand Search), _ decrease (Expand Search), we decrease (Expand Search)
a decrease » _ decrease (Expand Search), _ decreased (Expand Search), _ decreases (Expand Search)
2 step » _ step (Expand Search), a step (Expand Search)
10 nm » 100 nm (Expand Search), 10 mm (Expand Search)
-
141
-
142
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
143
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
144
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
145
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
146
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
147
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
148
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
149
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
150
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
151
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
152
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
153
Recombination of Autodissociated Water Ions in a Nanoscale Pure Water Droplet
Published 2025“…We found that the self-diffusion of water dramatically decreases in droplets with a diameter below 2.2 nm. …”
-
154
-
155
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…Fluorescence images were captured, while a mixture of gaseous EtOH and AcH was applied by switching between two bandpass filters at 1 Hz. Each mesh exhibited selective responses to the target VOCs, with no significant impact on the dynamic range observed in either the single or tandem configurations (EtOH 1–300 ppm, AcH 0.2–5 ppm). …”
-
156
-
157
Knockdown of ATP2C1 results in a minor decrease of [Ca<sup>2+</sup>] in WPB.
Published 2025Subjects: -
158
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…Fluorescence images were captured, while a mixture of gaseous EtOH and AcH was applied by switching between two bandpass filters at 1 Hz. Each mesh exhibited selective responses to the target VOCs, with no significant impact on the dynamic range observed in either the single or tandem configurations (EtOH 1–300 ppm, AcH 0.2–5 ppm). …”
-
159
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…Fluorescence images were captured, while a mixture of gaseous EtOH and AcH was applied by switching between two bandpass filters at 1 Hz. Each mesh exhibited selective responses to the target VOCs, with no significant impact on the dynamic range observed in either the single or tandem configurations (EtOH 1–300 ppm, AcH 0.2–5 ppm). …”
-
160
Tandem Imaging of Breath Ethanol and Acetaldehyde Based on Multiwavelength Enzymatic Biofluorometry
Published 2024“…Fluorescence images were captured, while a mixture of gaseous EtOH and AcH was applied by switching between two bandpass filters at 1 Hz. Each mesh exhibited selective responses to the target VOCs, with no significant impact on the dynamic range observed in either the single or tandem configurations (EtOH 1–300 ppm, AcH 0.2–5 ppm). …”